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Botnets – networks of machines infected with malicious software – are widely regarded 
as a critical security threat. Measures that directly address the owners of the infected 
machine end users are useful, but have proven insufficient to reduce the overall problem. 
Recent studies have shifted attention to Internet Service Providers (ISPs) as control 
points for botnet activity. This paper empirically tests the assumptions behind this 
approach. Using a global dataset of 138 million unique IP addresses that connected to a 
spam trap in the period 2005-2008, we have analyzed in detail the geographic patterns, 
time trends, and differences at the level of countries and ISPs. This data underlines the 
key position of ISPs as intermediaries. For example, in our dataset just 50 ISPs account 
for over half of all sources. For the first time, the patterns in infected machines are 
connected to other data, such as the size of the ISPs and the country in which they are 
located. Using bivariate and multivariate statistical approaches we investigate 
empirically the effects of country-level policy measures on the number of unique IP 
addresses sending spam at the ISP level.  

                                                
1 The authors would like to acknowledge the financial support of the Organisation for Economic Co-
operation and Development (OECD) and the Chair Innovation and Regulation of Digital Services at the 
Ecole Polytechnique, Paris  They also would like to thank three anonymous reviewers for their helpful 
feedback and comments which have contributed to clarifying the arguments presented in the paper. 
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Background 
 
The internet economy is highly dependent on information and network security. 
Estimates of the direct damage caused by internet security incidents vary wildly, but 
typically range in the tens of billions of US dollars per year for the U.S. alone (e.g., US 
GAO 2007; Bauer et al. 2008). In addition, all stakeholders in the information and 
communication system incur indirect costs of possibly even larger magnitude, including 
costs of prevention. While this damage is related to a wide variety of threats, the rise of 
malicious software (‘malware’) and botnets are seen as a, if not the, most urgent security 
threat we currently face.  
 
If recent estimates are correct, around 5 percent of all machines connected to the Internet 
may be infected with malware (BBC News 2007; House of Lords 2007; Moore et al. 
2009). The fact that the owners of these machines often do not know their machines are 
compromised is part of the problem. Malware may be distributed and used in many ways, 
including email messages, USB devices, infected websites, malicious advertising, and 
browser vulnerabilities (Jakobsson and Zulfikar 2008). 
 
The massive number of compromised machines has allowed the emergence of so-called 
‘botnets’ – networks of thousands or even millions of infected machines that are remotely 
controlled by a ‘botnet herder’ and used as a platform for attacks as well as fraudulent 
and criminal business models, such as the sending of spam and malicious code, the 
hosting of phishing sites, to commit click fraud, and the theft of confidential information. 
 
While originating in criminal behavior, the magnitude and impact of the malware threat is 
also influenced by the decisions and behavior of legitimate market players such as 
Internet Service Providers (ISPs), software vendors, e-commerce companies, hardware 
manufacturers, registrars and, last but not least, end users. As security comes at a cost, 
tolerating some level of insecurity is economically rational. Market players make their 
decision based on the perceived costs and benefits of a course of action. In many markets 
these benefits also reasonably reflect the resource costs and benefits of a course of action 
to society at large. However, economic research and policy analysis have identified 
situations in which this correspondence is weakened and systematic gaps between private 
and social costs and benefits of security exist, a situation for which the term 
“externalities” is used.  
 
Botnet mitigation by Internet Service Providers 
 
Recent research suggests that infected end user machines, in particular those of home 
users and small and medium-size enterprise (SME) users, are a key source of security 
externalities (Van Eeten and Bauer 2008). In contrast to larger corporate users, these 
groups often do not select desirable levels of protection.  
 
Measures that address end users directly – including awareness raising and information 
campaigns – are useful, but they have proven to be insufficient to reduce the overall 
problem. Recent studies have therefore shifted attention to key intermediaries, most 
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notably, ISPs – in the sense of access providers, not providers of hosting or other services. 
As access providers to end users, they form, to some extent, a natural control point for the 
effects of infected machines. Anderson et al. (2008, pp. 50-54) argue that liability for 
infected machines should be assigned to the ISPs, rather than to the consumers who own 
the machines. The authors also propose to impose statutory damages on ISPs that do not 
respond promptly to requests for the removal of compromised machines.  
 
Of course, the fact that ISPs can potentially mitigate this threat, does not mean that they 
should mitigate it. They are not the source of the externality and they have to bear 
substantial direct and indirect costs if they do internalize the externalities of their 
customers. Nevertheless, in a variety of countries, ISPs are now explicitly assuming some 
responsibility for botnet mitigation. Industry collaborative efforts like the Internet 
Engineering Taskforce (IETF) and the Messaging Anti-Abuse Working Group 
(MAAWG) have prepared sets of best practices for the remediation of bots in ISP 
networks. Under pressure from the government, Australia’s largest ISPs are preparing a 
voluntary code of conduct that includes contacting infected customers and filtering their 
connection.  
 
Within the OECD, other countries have indicated they are pursuing similar lines of action. 
A related initiative in Germany is the establishment of a government-funded call center to 
which ISPs can direct customers in need of support to disinfect their machines. The 
largest ISPs in the Netherlands – with an aggegate market share of over 90 percent – have 
entered into a covenant that expresses their commitment to mitigate botnet activity in 
their own networks. They claim that their organizations already have practices in place 
where they contact and in some cases quarantine customers whose machines are infected 
with malware. While this may be true, there is currently no data available that indicates 
the scale on which these practices are being carried out.  
 
Scale is critical, however. There are indications that ISPs only deal with a fraction of the 
infected machines in their networks. For example, in an earlier study we found that a 
large ISP with over four million customers contacted around 1,000 customers per month 
(Van Eeten and Bauer 2008, p. 29). Typical estimates of security researchers put the 
number of infected machines at around five percent of all connected machines at any 
point in time (Moore et al. 2009, p. 5). This would translate into about 200,000 infected 
machines for this specific ISP. Even if we reduce the estimated infection rate to one 
percent, that still implies 40,000 infected machines. This stands in stark contrast to the 
1,000 customers that the ISP claimed to be contacting – even when we optimistically 
assume that all contacted customers either willing and able to clean up their infected 
machine or are being quarantined. 
 
To reiterate: We are not claiming that ISPs should contact all the owners of infected 
machines. That is a matter for policy development to consider, taking into account the 
costs and benefits of mitigation, for ISPs, their customers, as well as society at large. We 
are simply stating that there is an urgent need to collect data, beyond the generic claims 
of ISPs that they are contacting customers and quarantining infected machines. This data 
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should inform us not only about the extent to which ISPs can mitigate, are actually 
mitigating, and how they perform relative to each other.  
 
To this end, the paper sets out to empirically answer the following questions: First, to 
what extent are ISPs critical control points for botnet mitigation? Second, to what extent 
do they perform differently relative to each other, in terms of the number of infected 
machines in their networks? Third, and last, to what extent can we explain the differences 
in performance from the characteristics of the ISPs or the environment in which they are 
located?  
 
Before turning to these questions, we first outline the research approach, as well as its 
limitations. At the heart of the research is data from a spam trap that has logged around 
138 million unique IP addresses of machines that connected to it. The raw data was 
parsed to associate IP addresses with ISPs and countries. We then examine the 
intermediairy position of ISPs. Surprisingly, in our dataset, just 50 ISPs account for half 
of all unique IP addresses of infected machines worldwide. We also explore the 
differences among ISPs in the extent in which their networks harbor infected machines. 
These differences are substantial, even when corrected for the size of the customer base 
of the ISP. To explain these differences, we employ bivariate and multivariate statistical 
approaches. Among others, using ISPs as the unit of analysis, we investigate empirically 
the effects of country-level policy measures on the number of unique IP addresses 
sending spam. We conclude with a discussion of the implications of our findings for 
current efforts to mobilize ISPs in botnet mitigation. 
 
Research approach 
 
There is no authoritative data source identifying infected machines around the world. 
Roughly, there are two types of sources: (1) data collected external to the botnet, 
identifying infected machines by their behavior, such as sending spam or participating in 
distributed denial of service attacks; (2) data collected internal to the botnet, identifying 
infected machines by intercepting communications within the botnet itself, for example 
by infiltrating the command and control infrastructure of the botnet. 
 
Each known source has its own strengths and weaknesses. The first type typically uses 
techniques such as honey pots, intrusion detection systems and spam traps. It has the 
advantage of identifying machines across a wide range of botnets. The drawback is that 
there are issues with false positives and negatives. The second type typically intercepts 
botnet communications by techniques such as redirecting traffic or infiltrating IRC 
channel communication. The advantage of this approach is accuracy: bots connecting to 
the command and control server are really infected with the specific type of malware that 
underlies the botnet. The downside is that measurement only captures infected machines 
within a single botnet. Given the fact that the number of botnets is estimated to be in the 
hundreds (Zhuang et al. 2008), such data may not be representative of the overal 
population of infected machines.  
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This study draws upon data from spam traffic – a source of the first type. The originating 
IP address of spam messages provides us with a useful source of proxy data for infected 
machines (see also Zhuang et al. 2008). The bulk of all spam messages are sent through 
botnets. Estimates published during the period under study put the figure at around 80 to 
90 percent of the total amount of spam (Ironport 2006; Messagelabs 2009). The 
originating IP address of a spam message is therefore very likely to indicate the presence 
of at least one infected machine.  
 
Our data is drawn from a spam trap – an Internet domain set up specifically to capture 
spam, whose email addresses have never been published or used to send or receive 
legimitate email traffic. In the period of 2005-2008, the trap has received 63 billion spam 
messages and incoming SMTP connections from about 138 million unique IP adresses 
worldwide.  
 
Of course, not all spam comes from infected machines and not all infected machines send 
spam. The first issue points to the risk of false positives. As mentioned above, 80 to 90 
percent of all incoming spam originates from a botnet. We have reason to believe that for 
the spam received by our trap this ratio is even higher. The trap is located at a small and 
relatively old generic top-level domain. Tactics to distribute spam through other means 
than botnets, such as “snowshoe spamming”, are typically more targeted and use fresher 
addresses, in part because these tactics are more costly than the use of botnets. In other 
words, this spam would not be captured by our trap and not lead to false positives. More 
importantly, at a later stage of the analysis, we split all spam sources in two categories, 
depending on whether the network in which the source is located belongs to an ISP or not. 
We focus our analysis on the first category, which eliminates a lot of potential false 
positives, namely spam from sources such as webmail providers, hosting providers and 
university networks. In short, we have reason to assume that the impact of false positives 
is limited. The second issue – not all infected machines send spam – points to the risk of 
false negatives, of undercounting infected machines. Our data undoubtedly suffers from 
undercounting, as do all existing data sources. That being said, sources external to botnets, 
such as spam traps, are less affected by this limitation than internal data sources, because 
they identify infected machines across a wide range of botnets. In that sense, these 
sources can be considered the most representative of the overall population. 
 
For each unique IP address that was logged by the spam trap, we looked up the 
Autonomous System Number (ASN) and the country where it was located, using the 
MaxMind geoIP database. As both ASN and geoIP information change over time, we 
used historical records to establish the orgin for the specific moment in time at which the 
message was received. We also recorded the number of spam messages sent from each 
source.2 This effort resulted in two time series of variables: unique IP addresses and spam 

                                                
2 The IP address of the incoming SMTP connection attempts were checked against a blacklist of known 
spam sources. In case the address was on the list, the connection was refused. To conservatively estimate 
how many messages these refused connections would have contributed to the spam volume, we calculated 
the daily average number of message sent per accepted connection attempt. Given that refused connections 
were from known spam sources, the number of messages these sources would have sent if the connection 
was accepted is likely to be higher than the daily average. 
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volume, both per ASN and per country. The former is more directly related to the number 
of infected machines. The latter variable is useful to balance some of the shortcomings of 
the former – a point to which we return in a moment. 
 
We have conducted extensive triangulation efforts to compare our data to the publicly 
available reports of security and anti-spam service providers. Most of the public data 
relates to the relative spam volume of countries. The commercial reports present different 
numbers, sometimes substantially different numbers. The patterns and distributions that 
we found were within the range reported by the commercial providers.  
 
We then set out to identify the ISPs to which the ASNs belonged. To the best of our 
knowledge, there is no existing database that maps ASNs onto ISPs. This is not surprising. 
Estimates of the number of ISPs vary from around 4,000 – based on the number of ASNs 
that provide transit services – to as many as 100,000 companies that self-identify as ISPs 
– many of whom are virtual ISPs or resellers of capacity of other ISPs.  
 
So we adopted a variety of strategies to connect ASNs to ISPs. First, we used historical 
market data on ISPs – wireline, wireless and broadband – from TeleGeography’s 
GlobalComms database. We extracted the data on all ISPs in the database listed as 
operating in a set of 40 countries, namely all 30 members of the Organisation for 
Economic Co-operation and Development (OECD), plus five “accession candidates” and 
five so-called “enhanced-engagement” countries. This resulted in data on 200 ISPs (see 
Appendix 1).  
 
The process of mapping ASNs to ISPs was done manually. First, using the GeoIP data, 
we could identify which ASNs where located in each of the 40 countries. ASNs with one 
percent of their IP addresses mapped to one of the 40 countries were included in our 
analysis. Next, we listed all ASNs in a country that were above a threshold of 0.5 percent 
of total spam volume for that country.  
 
We then checked the ASNs on this list against the list of ISPs in that country, as per the 
TeleGeography database. We used historical WHOIS records for each ASN to lookup its 
name and then consulted a variety of sources to see which, if any, of the TeleGeography 
operators it matches. In many cases, the mapping was straightforward. In other cases, 
more information was needed – for example, in case of ASNs of ISPs that had since been 
acquired by another ISP. In those cases, we mapped the ASN to its current owner.3  
 
While we believe this to be a robust approach to answer our empirical questions, it has 
certain limitations – most notably, the effects of Network Address Translation (NAT), 
dynamic IP addresses with short lease times and port 25 blocking. The question is how 
these practices affect the number of machines that are represented by a unique IP address. 

                                                
3 We mapped ASNs by going down the list of top spam-sending ASNs in each country, ranked by volume, 
until one of the following conditions was met: (1) 95 percent of the spam originating from that country had 
been covered; or (2) the number of ASNs covered is five times the number of ISPs in that country, as listed 
in the TeleGeography database; or (3) the next ASN contributes less than 1 percent of spam originating 
from that country and less than 0.01 percent of spam worldwide. 
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NAT means sharing a single IP address among a number of machines. This potentially 
underrepresents the number of infected machines, as they all show up as a single address. 
Dynamic IP addresses with short lease times implies that a single machine will have 
multiple IP addresses over time. This overrepresents the number of infected machines. 
Both of these practices counteract each other, to some extent. This limits the bias each of 
them introduces in the data, but this does not happen in a consistent way across different 
networks. Earlier research by Stone-Gross et al. (2009) has demonstrated that in different 
countries, there are different ratios of infected machines to unique IP addresses – the so-
called “churn rates”.  
 
We have two ways to robustly control for the potential bias that these churn rates 
introduce in our data. First, we look at the volume of spam in addition to the number of 
unique sources. If there are many machines behind a single IP address, the spam volume 
should be relatively high, even if it looks like a single source. If there is one machine 
behind many IP addresses, the spam volume should be relatively low. We have calculated 
the ratio of spam volume to unique sources in our data. The Spearman correlation 
between these ratios and the churn rates reported by Stone-Gross et al. (2009) is very 
high, namely -0.88. This suggests that spam volume can control for churn. A second way 
to control for it is by calculating the daily averages of the number of unique sources for 
ISPs. Research by Moore et al. (2002) found that, because of DCHP churn, IP addresses 
are not an accurate measure the number of infected machines on timescales longer than 
24 hours. We therefore ran all our analysis also using the daily averages and found that 
all patterns discussed below are consistent with daily averages. 
 
For all the analyses we discuss in this paper, we have always checked whether the pattern 
we found also persisted when using both of these controls. For the sake of brevity, we 
focus our discussion on the number of unique sources. When spam volume or the daily 
averages show a different pattern, we explicitly include it in the discussion. Where they 
are not mentioned, they are consistent with the findings as reported here. 
 
A final limitation is the use of port 25 blocking by ISPs. The effect of port blocking is 
that infected machines can no longer directly send email to the wider internet, but have to 
go through the ISP’s outgoing email servers. This affects both the number of sources as 
well as the spam volume. The ISP’s network may harbor housands of infected machines, 
but they can no longer reach the spam trap directly and thus do not reveal their IP address 
through spam distribution. There is one important way in which the attackers themselves 
compensate for this problem: when the bots notice they cannot connect anymore via port 
25, they start to send spam via the ISP’s official outgoing email servers. In various cases 
where port blocking was introduced, we saw that it led to a brief reduction of outgoing 
spam, only to return to the previous spam volume within about a month. It is difficult for 
the ISP to prevent this from happening, as each bot sends out a relatively low level of 
spam, and thus rate limits and similar controls do not pick up on it. The effect of this 
tactic is that here, too, spam volume provides the abilty to cross check our findings, to 
some extent. In other cases, port blocking is an unavoidable limitation to our data. If the 
spam volume remains consistently lower, port blocking obscures the presence of infected 
machines. That being said, the effect of the bias is not wholly unreasonable. The ISPs that 
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adopt port blocking improve their ranking in terms of botnet activity compared to those 
that don’t – which is not without merit, given that the measure of port blocking is part of 
many guidelines on best security practices for ISPs. 
 
Are ISPs critical control points? 
 
The most important reason to focus on ISPs as intermediaries is that they are viewed as 
critical control points. To some extent, this is obvious. The ISP’s customers can only 
send and receive traffic via the ISP, which creates a natural bottleneck to mitigate 
malicious activity of the customers’ machines. However, there are two important 
assumptions that are rarely explicitly acknowledged. First, to what extent are infected 
machines actually located within the networks of ISPs? In other words, what about the 
machines in use by, for example, hosting providers, application service providers, 
webmail providers, university networks and corporate networks? If ISPs can only control 
a minor portion of the infected machines, it undermines the argument to focus on them, 
more than the other players, as the key intermediaries in the fight against botnets.  
 
The second assumption behind the idea to focus on ISPs as control points is that the 
burden will be put on the relevant ISPs. We are most familiar with the legitimate ISPs, 
well-known brands that together possess the bulk of the market share. These 
organizations are identifiable, reachable and stable enough to be brought into some form 
of collaborative process or under a regulatory regime. However, as security incidents 
have often pointed out, there is also a class of so-called “grey” and “rogue” ISPs. This 
class may have a disproportionate part in the impact of botnet activity. They also 
typically evade, intentionally or not, the normal processes through which collective 
action is brought about. If we stimulate ISPs to do botnet mitigation, voluntarily or 
through some type of policy measures, the burden will not fall onto this class of ISPs. In 
other words, treating ISPs as control points implicitly assumes that the problem exists for 
the most part within the networks of the legimate providers that have most of the market 
share; not in the margins of the market, which is teeming with large numbers of small 
ISPs that are often shortlived and difficult to survey, let alone reach through public 
regulation or self-regulation. 
 
As far as we know, these assumptions have never been emprically tested. Our data allows 
us to do just that. As explained above, we are working with a set of 200 ISPs in the wider 
OECD – 30 member countries and 10 associated countries. This set consists of the ISPs 
that collectively posses the bulk of the market share in these countries. We first looked at 
the portion of the total number of unique sources of spam that can be attributed to these 
ISPs. Over the period of 2005-2008, between 63-69 percent of all global sources were 
located within networks of the 200 ISPs. For spam volume, the numbers are slightly 
lower: 50-64 percent (see Figure 1). If we look at the total number of sources in the 40 
countries where the ISPs are located, that ratio is, of course, even higher: 77-82 percent. 
This confirms the first assumption, namely that the bulk of infected machines are located 
in the networks of the larger, predominantly retail ISPs – rather than hosting providers, 
corporate networks, application service providers. These appears to be little, if any, 
volatility in this pattern.  
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It is interesting to note that these ratios vary significantly across countries. On the high 
end, we have countries like Israel, Turkey and Italy, where in 2008 over 96 percent of all 
sources are located with ISPs. On the low end, we find Canada, with around 42 percent, 
which may be explained by the fact that Canada has a large hosting provider industry. 
 
It is also interesting to look at the distribution of sources within this set of 200 ISPs. That 
gives us a sense of the validity of the second assumption. If we rank the ISPs in order of 
the number of unique sources in their networks in 2008, we find that the 10 highest 
ranking ISPs account for around 30 percent of all unique sources worldwide (figure 2). 
The top 50 ISPs account for over half of all sources worldwide. In light of the fact that 
there are 30,000 ASNs and anywhere between 4,000-100,000 ISPs, this is a remarkable 
finding. We also see that the curve flattens quickly. Adding the next 150 ISPs captures 
only an additional 8 percentage points of sources worldwide. This confirms the second 
assumption.  
 
In light of the thousands of players that are involved, collective action would seem an 
almost futile pursuit, given all the typical problems of free rider behavior and weakest-
link security. For botnet mitigation, however, the task of combating infected machines 
turns out to have more manageable proportions, institutionally speaking. Our findings 
strongly suggest that the more established and visible ISPs are indeed the ones who form 

Figure 1: Percentage of sources compared to global total 
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critical control points, not the thousands of smaller players that would be difficult, if not 
impossible, to reach through collaborative or regulatory efforts.  
 
Of course, none of this is to say that improving botnet mitigation has suddenly become an 
easy task. Nor are we arguing that the same pattern holds across other types of malicious 
activity. Many types of criminal activity do, in fact, thrive because of weakest-link 
problems among ISPs – as business models such as bulletproof hosting have 
demonstrated.  
 
Do ISPs perform differently in terms of botnet mitigation? 
 
A lot has been written about the incentives of ISPs, or lack thereof, to improve security 
(House of Lords 2007; Van Eeten and Bauer 2008; Bauer and Van Eeten 2009; Moore et 
al. 2009). Various incentives have been identified, some enhancing security, others 
working against it. It is not at all clear what the net effect is of these incentives on ISP’s 
behavior, nor whether this effect varies significantly across ISPs. Another way to frame 
this problem is to ask how much discretion ISPs have in mitigating botnets. If they are 
subject to similar incentives but have little organizational freedom to respond to them, 
then we would expect similar performance in this area. However, if they do have 
discretion and can respond differently, diverse performance outcomes will be observable. 
 

Figure 2: Percentage of sources located in top ISPs 
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The first factor to take into account is size. Our dataset includes a range of ISPs of 
varying size. In 2005, the smallest ISP had 3,000 customers and the largest 21 million 
customers, with the median at approximately 252,000. In 2008 the numbers were higher, 
with the smallest ISP showing 12,600 and the largest 44.3 million customers. The median 
in 2008 was at 500,750 customers. For some analysis, the dataset was split into small and 
large ISPs, with key statistics of the latter by about an order of magnitude higher than for 
the former group. Obviously, other things being equal, ISPs with more customers will 
experience more infections. If we look at ISP performance – as measured in number of 
unique sources and spam volume – and rank the ISPs according to their size, this 
becomes immediately visible (see figure 3 for the 2008 findings). We can see a nearly 
linear relationship, when both variables are transformed logarithmically (R2 is 0.43 for 
the period 2005-2008). That being said, there is still considerable variability.  
 
Across the board, we see a difference of two orders of magnitude, sometimes even higher, 
in the number of infected machines within networks of ISPs of similar sizes. This is not a 
matter of outliers. The coefficient of variation – basically the ratio of the standard 
deviation to the mean – is well above 1, both for the number of unique sources and spam 
volume. Other incentives may be country-specific, such as the cost of legal requirements 
or the cost of customer support. But even within countries we see substantial differences 
in performance. In the U.S. and Germany, for example, we still see at least one order of 
magnitude difference, often more, among ISPs of similar size (figure 3).  

Figure 3: Unique sources and number of subscribers of ISPs in the OECD (2008) 
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A third aspect is the performance of ISPs over time. Although we did not yet perform a 
detailed empirical analysis of the factors that explain differences in the dynamic response 
of ISPs to infections on their networks, we conducted an aggregate analysis of ISPs in the 
set of worst offenders. The Venn diagrams in figure 4 illustrate overlaps in the 50 worst 
performing ISPs between 2005 and 2008 both for the absolute and relative number of 
sources. There is some variation in membership in the total set and the various sub-sets. 
For example, a total of 66 ISPs were in the top 50 in one of the four years based on the 
number of infected machines and 77 ISPs were in the top 50 based on the number of 
infected machines per subscriber. However, we also observe a stable core of 34 ISPs that 
had the highest number of infected machines on their network during all four years (9 
ISPs were in the set in three years, 12 in two years, and 11 in only one year). With regard 
to infected machines per subscriber, 28 ISPs were in the set during all four years, 15 were 
in it during three years, 9 during two, and 25 during only one year.  
 
 
Figure 4: Variability in top 50 sources of spam 2005-2008 

 
 (a)  Variability in absolute (b) Variability in relative 
  number of sources  number of sources 
 
 
The size distribution of ISPs in the two core sets of poor performers throughout the entire 
time period is compatible with the overall picture gained from the statistical analyses. 
The smallest ISP with regard to absolute number of sources had about 480,000 
subscribers and the largest 44.3 million. With regard to sources per subscriber, the 
smallest ISP reported about 28,600 subscribers and the largest one 5,8 million subscribers. 
Within these sets, although there is considerable variation, larger ISPs on average did 
better than smaller ISPs. The patters remains the same when taking average daily 
numbers of sources, either in absolute or relative, per subscriber terms.  
 
All of this suggests that ISPs have significant discretion to decide how they engage in 
botnet mitigation and that their organizational incentives lead to different choices, even 
when working under a common set of institutional incentives, such as defined by the 
legal framework of a country. This point is reinforced when we look at the differences 
between countries, rather than ISPs. At the country level, our data measures the total 
spam output of ISPs and non-ISPs. As players with very different records within one 
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country are aggregated, country performance data show less variance than individual 
organization data. Consequently, at that level of analysis, the number of internet users 
explains around 70 percent of the variance in performance. As ISPs do perform very 
differently under comparable institutional incentives and economic circumstances, this 
suggests that country-level mitigation measures, while necessary, will not be sufficient 
unless they also address the organizational incentives and realign both. In the next section, 
we explore the extent to which we can explain these differences among ISPs. 
 
Explaining the differences among ISPs 
 
Advanced information and communication technologies form a highly interrelated 
ecosystem. Like other actors, ISPs respond to economic and non-economic incentives. 
Most generally speaking, incentives are the factors that individual and organizational 
decision-makers take into account. Given the highly dynamic nature of this ecosystem, 
the observations reported in the previous section could be the complex outcomes of the 
varied responses by ISPs to the problems of botnets without an underlying stable pattern. 
However, if the phenomenon had certain regularities this knowledge could be utilized to 
improve cybersecurity. We therefore formulated a simplified conceptual model of the 
ecosystem around ISPs and subjected it to empirical analysis. Figure 4 represents a 
stylized model of the factors that influence botnet activity: the security measures adopted 
by an ISP, the level and virility of cybercriminal attacks, technological factors, and user 
behavior. Other factors, such as the behavior of software vendors and registrars, also 
impact this ecosystem, but they are outside the scope of this study (see van Eeten and 
Bauer 2008 for an in-depth discussion). An ISP’s decisions to adopt security measures 
are influenced by factors related to the institutional and organizational environments. 
These groups of factors are linked in multiple feedbacks so that they co-evolve over time. 
For example, stronger security efforts by an ISP may reduce botnet activity but also result 
in stronger efforts by cybercriminals to find new attack vectors. As our units of analysis 
are ISPs, it is important to take the national context into account. However, cybercrime is 
a transborder phenomenon and the international context is therefore also relevant. 
 
The incentive structure of a particular ISP is shaped by institutional and organizational 
factors. These two sets of factors are interrelated in many ways. For example, a 
regulation obliging an ISP to undertake certain security measures has cost implications at 
the organizational level. Likewise, the failure of ISPs to adopt a sufficient level of 
security-enhancing measures increases the likelihood that institutional responses might be 
sought. It is nonetheless useful to distinguish them, as institutional incentives can be 
designed by policy makers whereas organizational ones are typically shaped by managers 
(often in response to institutional incentives). Overall, the resulting incentive structure 
under which an ISP operates consists of a mix of contradictory forces, some increasing 
efforts to mitigate botnets (other things being equal) and others weakening them (other 
things being equal). For example, if higher botnet activity increased the risk of being 
blacklisted this constitutes a positive incentive– i.e., an incentive to improve security and 
to mitigate botnet activity. In contrast, the cost of acting against infected machines is a 
negative incentive, as higher costs reduce botnet mitigation efforts. Depending on the 
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strength of the relation between an incentive and the effort to mitigate botnet, incentives 
fall on a continuum from high-powered (strong) to low-powered (weak).  
 
The level of effort that ISPs exert on botnet mitigation depends on the relevant set and the 
relative strength of positive and negative incentives. Relevant institutional factors include 
the legal and regulatory framework in which ISPs operate, the market structure and the 
associated competitive pressures, and the conditions in related markets, e.g. for security 
technology. Relevant organizational factors include the size of the customer base, the 
organization of the abuse desk, and the cost of various security measures. Which 
incentives will be perceived as relevant by an ISP is influenced by its business model. 
Commercial ISPs will primarily respond to incentives that have direct and indirect 
implications for their bottom line. Likewise, rogue ISPs deriving most of their business 
from activities related to cyberfraud and cybercrime will also primarily respond to 
economic incentives (Van Eeten and Bauer 2008). In both cases, non-economic 
incentives, such as peer pressure and peer recognition, may play a role. These types of 
incentives are often seen to be subordinate to economic incentives. This need not be the 
case, however. When peer pressure takes the form of blacklisting, it has economic effects 
that can be quite significant, such as rising cost of customer support, when customers 
experience the effects of blacklisting and start calling their ISP. The relative weights of 
relevant incentives could be different for non-profit ISPs or cooperatives but even such 
ISPs do not have unlimited resources and will have to pay attention to economic factors. 
All ISPs will therefore be influenced by the incentives identified in Figure 4, which 
interact to jointly influence an ISP’s botnet mitigation effort. 
 
The signs in Figure 4 refer to the direction of the incentive, other things being equal. A 
positive sign indicates that the incentive has likely a positive effect on the level of botnet 
mitigation by an ISP. The strength of an incentive is quite a different issue and may 
depend on the presence of complementary incentives. For example, laws providing a base 
for action against spammers will only be effective if they are also enforced actively. 
Likewise, the effectiveness of liability rules, which are often mentioned as a possible 
course of action, will depend on whether or not the required burden of proof can be met. 
Because such enforcement encounters great difficulties, leading legal scholars tend to be 
skeptical whether liability rules are workable (e.g., Spindler 2007). The effectiveness of 
incentives and the interaction between them will also be influenced by the national 
context. Of particular importance are the diffusion of broadband service, the income level 
of a country, the education level of the population, and the diligence of law enforcement. 
 
Agents in this ecosystem usually have an incomplete view of the relevant facts and/or of 
the consequences of particular actions and make their choices within these informational 
boundaries (“bounded rationality”). Moreover, while there will be some shared 
(“common”) information, part of the incomplete information will be asymmetrically 
distributed among the stakeholders. Agents even in otherwise similar organizations may 
therefore respond differently to the same set of institutional incentives if their knowledge 
differs. Therefore, one would expect a diverse set of responses to the institutional and 
organizational incentives under which ISPs operate. Despite this diversity of responses, 
the effect of incentives can nevertheless be systematically examined. 
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Due to data constraints, for purposes of empirical analysis, the conceptual framework 
discussed in the previous paragraphs was further simplified to a more manageable 
empirical model. No data on the number of infected machines was available. We 
approximated it with two measures: the number of unique IP addresses emitting spam 
and the total number of spam messages originating from an ISP during a specific time 
period. Drawing on the conceptual framework discussed above, a large number of 

Figure 4: Conceptual framework 
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variables that could either serve as direct measures of as proxies for the independent 
variable were used. In this paper, only variables that were seen as relevant based on the 
conceptual approach and that yielded a statistical contribution are reported. In addition, 
control variables were introduced to take factors related to technology, user behavior, and 
the national context into account. As cybercrime is a globally mobile phenomenon, we 
proceeded on the assumption that all ISPs are targeted at a comparable rate (although the 
level of botnet activity is influenced by an ISP’s security efforts as well as other control 
factors and will thus vary). The empirical model is displayed in Figure 5.  
 
Data for the independent and control variables was collected from several sources, 
including the World Bank’s World Development Index database, the UN Human 
Development Reports, the Software Business Alliance, and TeleGeography’s 
GlobalComms database (see Appendix 2). Where possible, data was triangulated against 
other sources, such as the International Telecommunication Union’s World 
Telecommunications Indicator database. In addition to the 63 billion spam messages from 
138 million unique sources, which were parsed, aggregated, and attributed to ISPs and 
countries in the way discussed above, we were able to assemble a panel of annual 
observations for 2005-2008 for 40 countries. Although we were able to gather 
considerable evidence, it was not possible to generate empirical data for all the variables 
suggested by the theoretical model forcing us to work with proxies where available. 

Figure 5: Empirical framework 
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However, in some cases, such as prices for internet access services, the empirical model 
was constrained by lack of data. 
 
Empirical findings 
 
The dynamic nature of botnets raises many methodological challenges. Three approaches, 
each with its own advantages and disadvantages, were used to test hypotheses derived 
from the theoretical framework: (1) bivariate methods, (2) multivariate methods using 
pooled data, and (3) panel data analysis. In each case, we set out to explain relative 
differences in botnet activity among the ISPs. Unless noted otherwise, we used as the 
dependent variables the number of infections per subscriber – i.e., unique sources per 
subscriber and spam volume per subscriber.4 
 
Bivariate analysis offers a first crude look onto the relations between independent 
variables and the proxies for botnet activity. However, it has to be kept in mind that 
bivariate statistics neglect the influence of other factors that may play a role and therefore 
may attribute too much influence to a single independent variable. They therefore grant 
only a preliminary understanding of the data structures. The robustness of findings needs 
to be checked against multivariate statistical methods. The results of this analysis are 
presented in Table 1.  
 
That ISPs (as opposed to other types of players, such as hosting providers or corporations 
operating a network with its ASN) play a central role in botnet activity was already 
discussed. Likewise, the great variability among ISPs was already discussed. In addition 
to these findings, our data indicate the following (see Asghari 2010 for a more detailed 
discussion):  
• There is a widely held belief that larger ISPs show worse security performance, as 

they face much less peer pressure. For instance, Moore, Clayton, and Anderson (2009, 
p. 10) state that “...very large ISPs are effectively exempt from peer pressure as others 
cannot afford to cut them off. Much of the world’s bad traffic comes from the 
networks of these ‘too big to block’ providers.” In contrast to this belief, our dataset 
indicates that, while larger ISPs emit more spam in absolute numbers, relative to size 
their performance is on average slightly better than that of smaller ISPs. 

• Another claim is that lower average revenue per user (ARPU) is a sign of higher 
financial pressure that might result in less attention to security. Our data suggests that 
ARPU and relative security performance are unrelated. 

• Given differences in networking technology and user base, one might hypothesize 
that cable service providers can enhance their security performance easier than DSL 
providers. Our data indicates an eight percent lower incidence of unique sources for 
cable companies. The volume of spam, however, is similar for both types of providers, 
which might reflect that cable subscriptions have higher average bandwidths than 
DSL subscriptions. 

• Bivariate analysis indicates that ISPs in countries that have joined the London Action 
Plan (LAP) have, on average, 12 percent fewer bot infections. Likewise, operating in 

                                                
4 See Appendix 3 for the descriptive statistics of the variables and Appendix 4 for the pair wise correlations 
between the independent variables. 
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a country that has signed the Council of Europe’s Convention on Cybercrime is 
negatively correlated with botnet infections. Neither of these initiatives targets 
botnets directly. However, one could argue that membership is a proxy for the overall 
commitment of a country’s government to enhance cybersecurity – and thus of a 
broader set of measures undertaken. Earlier research by Wang and Kim (2009) 
provided some evidence in support of this effect, though they presume a somewhat 
tenuous direct causal link between the Convention and cybercrime, rather than 
interpreting membership of the Convention as a proxy variable. However, factors 
correlated with a country’s willingness to sign these agreements could also be at work 
both for the Convention as well as the LAP. 

• A frequently stated claim is that countries with higher rates of software piracy also 
have higher botnet activity. At the bivariate level, our data supports that a moderate 
positive relation exists between piracy and botnet activity. 

• Bandwidth is often seen as enabler of malware (e.g., OECD 2009). However, our data 
does not support that claim at the bivariate level and we did not find an indication that 
increased use of broadband connections does “automatically” translate into a higher 
number of bot infections – measured either in the number unique sources or spam 
volume. 

Table 1: Bivariate test results for number of unique sources per subscriber* 
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• Lastly, we were interested in whether higher education levels are associated with 
lower levels of botnet activity. In the bivariate analysis, a negative effect of higher 
education on botnet activity is indeed visible. 

 
To overcome the limitations of bivariate analyses, multiple regression analyses were 
conducted. With four years of information available, the data could be examined from 
different perspective (although only a few selected findings are reported here), including 
cross sectional analyses of annual data, pooled data, and panel data estimation. In a 
pooled data design, the driving methodological assumption is that the same generative 
process explains all observations, independent of the ISP and/or the year. This implies 
that parameters do not vary between the units of analysis. Although this is a strong 
assumption, in the present case, where all ISPs are subject to a relentless stream of 
attacks of a predominantly global nature, it is not entirely unrealistic. A recent study 
found that half of the detected botnets included machines in over 30 countries. Some 
botnets even control machines in over 100 countries (Zhuang et al. 2008).  
 
The relative measures of botnet activity (number of unique sources per subscriber or 
spam volume per subscriber) are more intuitive, because we want to compare ISPs. But 
the downside of using dependent variables normalized with the size of the ISP is that they 
require us to use instrumental variables so as to not violate a key assumption of the linear 
regression model. For this reason, transformations of the variables are used. Moreover, to 
gain insights into the factors driving the total number of infected machines, we first 
specified a model using the absolute number of unique sources for each ISP – 
transformed by using a log function.5 The double-log specification has the advantage that 
β-coefficients can be interpreted as elasticities. 

                                                
5 We used a logarithmic transformation because the order of magnitude of the number of subscribers is 
more important the absolute number – i.e., we would expect security practices to differ between an ISP 

Table 2: Pooled regression results for unique sources of spam (log transformed)* 
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The findings from the pooled regression analysis are presented in the second column of 
Table 2. The model explains about 51 percent of the variation among ISPs in the number 
of unique sources (49 percent when using spam volume as dependent variable). The 
model is largely congruent with the bivariate findings, except for the impact of the 
Cybercrime Convention and education, which now are found to be weaker and non-
significant. 
 
To explore the relationship between ISP size and botnet activity that was found in the 
bivariate analysis, we divided the set of ISPs into two groups: small and large ISPs. The 
results are presented in the third and fourth column of Table 2. The initial finding is 
confirmed. The elasticity of unique sources to changes in the number of subscribers is 
higher in smaller ISPs – that is, a one percent increase in the number of subscribers leads 
to a higher increase in the percentage of infected sources for small ISPs (0.56) than large 
ISPs (0.43). Simply put, smaller ISPs are, on average, doing slightly worse.  
 
The effect that cables providers have lower infection rates appears to hold primarily for 
smaller ISPs. If indeed, as we hypothesized earlier, this effect is tied to automation that 
could explain why we do not see the effect of cable versus DSL for large ISPs, as they 
are more likely to already have automation in place because of their size. The effect of 
regulatory activity – as measured by the proxy of LAP membership of the country in 
which the ISP is located – is stronger in large ISPs. This fits with the earlier observation 
that large ISPs are more within the reach of governmental efforts to improve 
cybersecurity. 
 
The next step in multivariate analysis was to model the relative performance of ISPs, i.e., 
the amount of botnet activity corrected for size of the ISP. 6 The results are presented in 
Table 3. This model explains about 36 percent of the variance, notwithstanding the many 
factors at play in the botnet phenomenon. However, it also clearly indicates that other 
factors are at work, pointing to the highly dynamic nature of the phenomenon – not in the 
last place because of volatile patterns caused by the attackers. An analysis of the error 
terms indicated the presence of heteroscedasticity, which weakens but does not invalidate 
the findings. It is a possible indication that other factors that are not yet included in the 
model, may be at work. 
 
As incentives typically do not work in isolation from each other, we also introduced 
interaction terms to capture the joint effects of selected factors. Interaction terms appear 
among the country level variables, indicating that they change in ‘configurations’, as is 
often the case with institutional and demographic variables.  
 

                                                                                                                                            
with 50,000 subscribers versus one with 500,000, but not between ISPs with 5 million and 5.5 million 
subscribers. 
6 This variable was transformed using a square root function, because of the law of diminishing returns at 
work for this variable – e.g., completely infection-free ISP networks are non-existent, but as the number of 
infections goes up, it becomes increasingly difficult to add additional infections – i.e., it is all but 
impossible to achieve a 100 percent infection rate.  
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Although some of the findings differ from the simple bivariate analysis, there is also 
considerable congruence. With the exception of membership in the Cybercrime 
Convention, all variables in Table 3 are significant at the one percent level. In this model 
specification, the parameters of the total number of subscribers of the ISP, cable service 
provision status, membership in the Cybercrime Convention, and education levels of 
users all were negative, indicating that these factors mitigated botnet activity. In the 
multivariate setting, the parameter sign of the piracy rate, however, switched to negative 
and the parameter sign of LAP membership to positive. As these factors may interact 
with others, we tested several specifications of interaction effects. Of these, interactions 
of LAP membership with education and piracy generated negative parameter signs 
(indicating, for example, a botnet mitigating effect of the interaction of LAP membership 
and education but, less convincingly, also of LAP membership and piracy rate). This 
implies that some of the findings are sensitive to the specification of the model and 
therefore less robust than other findings that do not change. 
 
The third approach used panel data methods. Panel data allow taking advantage of the 
cross-sectional and time-series dimensions of the data. In other words the method takes 
advantage of the fact that data originated from different ISPs and at different points in 
time. In our case, we used a fixed effects model, which relaxes the assumption of the 
pooled data approach that one generative process drives the botnet phenomenon and 
allows ISP-specific differences. With only four years of observations, though, panel data 
estimation has inherent limitations. Moreover, variables that do not change within one 
country during the four years (e.g., institutional incentives such as LAP or Cybercrime 
Convention membership) cannot be used and are therefore dropped in the estimation 
procedure. Of the three methods, panel data estimation therefore is the most challenging 

Table 3: Pooled regression results for unique sources per subscriber (sqrt transformed)  

      Source |       SS       df       MS              Number of obs =     664 
-------------+------------------------------           F( 11,   652) =   34.68 
       Model |  12.2717863    11  1.11561693           Prob > F      =  0.0000 
    Residual |  20.9735399   652  .032168006           R-squared     =  0.3691 
-------------+------------------------------           Adj R-squared =  0.3585 
       Total |  33.2453262   663   .05014378           Root MSE      =  .17935 
 
------------------------------------------------------------------------------ 
  src_per_sq |      Coef.   Std. Err.      t    P>|t|                     Beta 
-------------+---------------------------------------------------------------- 
  totsub_log |  -.0336822   .0122981    -2.74   0.006                -.1072685 
   srv_cable |  -.4511269   .1281703    -3.52   0.000                -.9433911 
  icblXsubln |     .06528   .0229551     2.84   0.005                 .7614554 
   cyber_mem |  -.0403519   .0213033    -1.89   0.059                -.0801629 
     lap_mem |   5.055042   1.300163     3.89   0.000                 11.16164 
 piracy_rate |  -.0395952   .0137778    -2.87   0.004                -3.022274 
     educ_ix |  -3.083531   .9688927    -3.18   0.002                -.8433481 
    ilapXedu |  -5.597067   1.355777    -4.13   0.000                -11.91356 
    ilapXpir |  -.1252716   .0205351    -6.10   0.000                -11.96453 
    ieduXpir |   .0438092   .0144469     3.03   0.003                 2.782703 
ilapXeduXpir |   .1393075   .0218696     6.37   0.000                 12.18444 
       _cons |    415    .938184     3.77   0.000                        . 
------------------------------------------------------------------------------ 
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approach for finding a statistical model that yields statistically significant parameter 
estimates. Table 4 presents the findings from a version that is close to the one found to fit 
the pooled data.7 Several variables (number of subscribers, interaction terms) show the 
same sign as in the other procedures. The coefficient for the education proxy in the panel 
approach shows a positive sign, which is incompatible with the more plausible findings in 
the other two approaches. In the case of total subscribers, the significance level is below 
the 5 percent level. Statistical significance may not be a central concern, though, because 
the ISPs in our dataset represent the lion’s share of the ISP market in the 40 nations. 
Therefore, our data is nearly a complete enumeration of the markets rather than a sample. 
In this case, the parameter estimates reflect the data structures in the empirical universe 
under investigation. In as far as ISPs are concerned, it is not necessary to make inferences 
from a subset to the whole phenomenon. Consequently, significance levels lose in 
importance when interpreting the findings. 
 

                                                
7 The model explains only about 10 percent of the variance in the dependent variable overall, 12 percent of 
the variance between ISPs, and 7 percent of the variance within each of the 175 ISPs for which all data 
were available. Given the wide diversity of the ISPs, the short panel of only four years of observations, and 
the highly dynamic phenomenon of spam, this is not surprising. Other model specifications explain a higher 
share of the variance but often do not yield statistically significant coefficients. If we were to interpret the 
data as an enumeration, this would be acceptable. In these model runs, we can explain up to 49 percent of 
the overall variance of the total number of spam messages, with the size of the user base typically the most 
important explanatory variable. 

Table 4: Panel regression results for unique sources per subscriber (sqrt transformed) 

 
 



23 
 

Table 5 summarizes and compares the findings from the different approaches. 
Explanatory variables which show the same direction of influence on the dependent 
variable in all three approaches can be considered more robust than independent variables 
for which the findings differ (shaded in Table 5). In several cases, a variable could not be 
used in all three specifications, for example, because it did not vary within one country 
during the four years under consideration. Moreover, interaction terms do not make sense 
in bivariate statistics. In these cases, consistency means that the variable show the same 
directional effect in the remaining two approaches. Such defined consistency is 
observable for the size of ISPs, for whether an ISP uses a cable rather than a DSL 
platform, membership in the cybercrime convention, and the various interaction terms 
between LAP membership and education as well as LAP membership and piracy. In the 
case of the piracy rate and the education proxy results are mixed, with one method’s 
results deviating from the others. We interpret this as a less robust finding. 
 
Conclusions 
 
This paper set out to address a number of questions. First, our findings support the view 
that ISPs are indeed critical control points for botnet mitigation. In addition, a more 
specific pattern was uncovered. While the class of ISPs includes anywhere between 4,000 
and 100,000 actors, we found that the distribution of infected machines is highly 
asymmetrical. Just 50 ISPs consistently accounted for over half of all infected sources. 
Such a skewed distributions is a familiar pattern for many Internet-related phenomemon. 
However, its presence in this situation is less likely than it may appear, as ISPs for 
consumers and SMEs are oriented towards national markets, not global ones.  
 
From a policy perspective, this is a relevant finding. Even if ISPs were to be a more 
effective control point compared to the hundreds of millions of end user machines, it 
would be extremely difficult to bring about collective action among many thousands of 
actors located in over a hundred countries. Our data suggests the task may have more 
manageable proporties. Not only is the number of actors needed to create an impact on 
botnets smaller than expected, the most critical actors are also the easiest to target with 
governmental interventions or some form of public-private sector cooperation, as they are 

Table 5: Summary empirical results for unique sources per subscriber* 
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larger, well-established corporations, rather than large numbers of small ISPs that are 
often shortlived and difficult to survey, let alone reach with collaborative or regulatory 
efforts.  
 
Stimulating ISPs to increase botnet mitigation presumes that ISPs have the discretion to 
step up such efforts. This is not self-evident. It is well-known that in retail ISP markets, 
competition is first and foremost driven by price. In many countries, price competition is 
fierce. Moreover, even if consumers cared about security, there are no adequate market 
signals that could reliably guide them towards more security-conscious ISPs. Most 
industry insiders lack such signals as well, except for the unreliable anecdotal evidence 
and speculative claims that are bandied around the security community about the 
performance of this or that ISP.  
 
If the behavior of ISPs is mostly driven by institutional incentives, outside the control of 
the individual ISP, then we would expect similar levels of performance in terms of botnet 
mitigation. Attempts to get ISPs to increase their efforts would first have to change that 
incentive structure. To get a sense of the discretionary power of ISPs to do botnet 
mitigation, we explored the extent in which they performed different relative to each 
other, in terms of the number of infected machines in their networks. We found that 
perfomance levels are highly dispersed. For ISPs of similar size, we found that the 
differences typically span two orders of magnitude – i.e., a hundred-fold difference. Even 
within the same country, we see differences of more than one order of magnitude for ISPs 
of similar size. In other words, external conditions do not dictate the ISPs’ internal 
incentives and, hence, their efforts. Operating under comparable conditions allows for 
remarkable differences in performance.  
 
We developed a theoretical framework to explain the differences among ISPs and then 
empirically tested some of these explanations. We found that characteristics of the user 
base matter. Higher rates of using pirated software are associated with higher botnet 
activity. Higher average connection speeds are not. The level of education, as a proxy for 
technical competence, is associated with lower levels of botnet activity. We also found 
limited evidence to support the idea that governmental efforts to improve cybersecurity 
are related to lower levels of botnet activity – confirming earlier research Png and Wang 
(2007) and Wang and Kim (2009), though unlike the latter, we found no impact of the 
Convention on Cybercrime, once we took other factors into account. However, given the 
substantial variability among ISPs subject to one specific set of institutional incentives, 
such public policy measures, while possibly necessary conditions to enhance security, are, 
taken by themselves, not sufficient. 
 
Regarding the ISPs themselves, we found that average revenue per customer did not 
make a difference. So price may not be related to security performance. Market share of 
an ISP in its home country was not associated with worse performance either. We also 
tested the claim that large ISPs perform worse than smaller ones, because they are less 
subject to peer pressure (Moore et al. 2009). Our data suggests this is incorrect. In fact, 
we found support for the idea that large ISPs actually perform better than average, 
measured in number of sources and spam volume per subscriber). The reason that 
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industry insiders often claim the opposite may simply be an effect of repeatedly seeing 
the same names on the lists of worst offenders – in other words, of seeing the 50 or so 
ISPs that we also found as critical to the overal problem. However, those lists may fit 
nicely with anecdotal evidence, but they fail to take into account critical and obvious 
factors, such as the size of the customer base. One speculative reason why large ISPs 
actually do slightly better may be that their size forces them do introduce automation in 
incident response and abuse management. A similar mechanism may explain why we 
found that cable providers did slightly better than DSL providers. The management of 
cable networks often include automated systems and these technologies perhaps make it 
less costly to deal with infected machines. Given the ongoing advances in technology, 
including botnet mitigation solutions, the difference between cable and DSL may 
disappear in the immediate future. 
 
In sum: our study provides evidence that ISPs are critical control points and that even 
under current market conditions increased efforts to mitigate botnets appear possible. 
Current efforts to bring about collective action – through industry self-regulation, co-
regulation, or government intervention – might initially achieve progress by focusing on 
the set of ISPs that together have the lion’s share of the market. Further work is needed to 
explore ways in which to strengthen the ISPs incentives to improve botnet mitigation. 
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Appendix 1: List of the countries and count of ISPs included the final dataset 
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Appendix 2: Data and data sources 
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Appendix 3: Descriptive statistics 

 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
    unq_srcs |       741    185324.9    504712.2         20    5904500 
  src_persub |       741     .191359    .2107284      .0001     1.1329 
   total_sub |       741     1374231     3369101       3000   4.43e+07 
market_share |       709    .1820523    .1988902      .0005     1.2358 
  rev_persub |       194    4305.685    5135.762   182.1285   42768.34 
-------------+-------------------------------------------------------- 
   srv_cable |       665    .3233083    .4680914          0          1 
     lap_mem |       741     .562753    .4963815          0          1 
   cyber_mem |       741    .7098516    .4541373          0          1 
 piracy_rate |       740    40.35135    17.31936         20         87 
     educ_ix |       741    .9440931    .0671315       .632       .993 
-------------+-------------------------------------------------------- 
     int_bpp |       386    14345.77    16918.11   190.8559   92832.46 
   spam_msgs |       741    4.53e+07    1.10e+08       7679   1.54e+09 
 spam_persub |       741    55.57274    79.03818      .1697   830.8522 
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Appendix 4: Pair wise correlations between the independent variables 

             | total_~b market~e rev_pe~b srv_ca~e  lap_mem cyber_~m piracy~e 
-------------+--------------------------------------------------------------- 
   total_sub |   1.0000  
market_share |   0.2530   1.0000  
  rev_persub |  -0.1149   0.1907   1.0000  
   srv_cable |  -0.0958  -0.2110  -0.2721   1.0000  
     lap_mem |   0.1519  -0.1900  -0.1078   0.0922   1.0000  
   cyber_mem |  -0.0729  -0.0887   0.0188   0.0738   0.1498   1.0000  
 piracy_rate |   0.0849   0.1284   0.1344  -0.0942  -0.3513  -0.6066   1.0000  
     educ_ix |  -0.0835  -0.0793  -0.2180   0.1317   0.3184   0.4939  -0.6068  
     int_bpp |  -0.0527  -0.0759  -0.1881   0.0046   0.2420   0.4757  -0.5176  
 
             |  educ_ix  int_bpp 
-------------+------------------ 
     educ_ix |   1.0000  
     int_bpp |   0.3476   1.0000  
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