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Abstract

A large portion of innovators do not patent their inventions. This is a relative

puzzle for those who view innovators as at the mercy of imitators in the absence

of legal protection. In practice innovators however invest actively in making their

products technologically hard to reverse engineer. We consider the dynamics of

imitation and protection of innovations. We show that innovators can obtain high

profits in the absence of legal protection. Surprisingly, in general, the protection

technologies that yield the highest profits for the innovator are expensive and do

not protect well. Our model also allows us to draw conclusions on the design of

patent policy and on the dynamics of employment and mobility of researchers in

innovative industries.

1 Introduction

It is now well established that a large portion of innovations are not protected by patents.

Some subject matters are still not patentable, although those are now few, but more

importantly a substantial number of innovators choose other means of protection, such as

secrecy. Moser (2011) shows that most innovations presented at 19th Century World Fairs

were not patented.1 Several influential surveys of managers (Cohen, Nelson and Walsh

(2000), Arundel (2001)) document the fact that patents are rarely the most popular mean

of appropriating returns from R&D investments. Based on a survey run in 1994, Cohen,

Nelson and Walsh (2000) establish that only 34.8 percent of managers judged patents

as an effective way of appropriating returns from product innovations (compared to 51

percent for secrecy).

∗Sciences Po Paris
†Ecole Polytechnique
189 percent for the 1851 fair.
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This remains somewhat of a puzzle for many since the sources of profits for innovators

outside patents are still badly understood. Most view successful innovators as helplessly at

the mercy of aggressive imitators in the absence of legal protection. Some do acknowledge

that imitation might be a process that takes time, and thus make secrecy relatively more

attractive, but this lag between innovation and imitation is most often considered as

exogenously given, a characteristic of the product or of the sector for instance. We

believe on the contrary that innovators are not as helpless as commonly argued and

in particular can control the speed of imitation by making their technologies harder to

reverse engineer. The dynamics of protection will be the focus of our work.

Examples abound of firms pursuing protective measures beyond patent law. Ichijo

(2010) illustrates this for some consumer electronics products: ”Sharp has put tremen-

dous efforts into making imitation of its LCD TV sets time consuming and difficult.

Various initiatives at Kameyama are aimed at increasing complexities (...) in order to

make imitation difficult”. A similar behavior can also be observed in some high-tech

manufacturing industries. The software industry is full of obfuscation strategies and

tools designed to interfere with reading of the machine code or its decompilation. Not

only software, but also hardware can be actively protected. For example, it is quite typ-

ical in the semiconductor industry to encase some of the important circuitry in epoxy

blocks so that electronics are destroyed if someone tries to open them.2 It is not unusual

either to design the integrated circuits to have pieces that are seemingly unused but are

required for the operation.

In this paper, we show that accounting for the dynamics of investments in such pro-

tective measures may radically affect our views on sources of profits for innovators outside

patents and can also inform the design of the patent system. Dynamics are essential to ap-

proach this question. The common view is that free riding by imitators will be extremely

harmful. However, this ignores two important facts. First, free riders upon imitation find

themselves in a similar situation as the innovator, thus endogenously keeping barriers to

entry high. Second, free riders can free ride on each other: if it is anticipated that the

next imitator to enter will do so without paying for protection, all imitators delay their

entry in the hope of benefiting from the efforts of one of their competitors.

These ideas are formalized in an infinite horizon model in which the inventor faces

a pool of ex ante identical imitators who are initially inactive. At every period, those

who have not yet reversed engineered the invention decide whether to do so at some

(possibly low) imitation cost ci. If they do, they also decide whether or not to pay a

one-time protection cost cp. If all previous entrants have paid cp, the cost of reverse

engineering for the remaining imitators is ci. If at least one of them has not invested in

2Another common way to reverse engineer electronics and circuits is to use x-ray images and work
out what components have been used. For this reason, firms try to hinder these imitation efforts by
positioning parts in such a way that the x-ray recognition is hampered.
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protection by paying cp, the innovation becomes freely available. Protection technologies

are characterized by their cost, cp, and the strength they confer, ci.

We focus on the case that in principle is the most unfavorable to the inventor: im-

itation is always profitable and can take place almost instantaneously.3 We find in this

setting that inventors can earn very high rents even in the absence of legal protection.

Such high rents may also be well above those attained by imitators. Surprisingly, the

protection technologies that tend to yield a high payoff for the inventor are expensive

and do not protect very well (high cp and small ci). The intuition of this result is the

following: the fact that the protection technology is expensive means that, upon entry,

imitators will not use it. Thus, when the first imitator enters, the knowledge necessary

to reproduce the product enters the public domain and all remaining imitators enter for

free. This creates a strong incentive for imitators to free ride on other imitators’ efforts,

initially delay costly entry, thus leaving potentially very high profits to the innovator.

We also find that, for other protection technologies, the payoff to the inventor can be

quite low. Our theory can thus help us understand the relative importance of secrecy

and patenting across sectors. Indeed if the type or protection technologies available to

firms varies across sectors, our theory predicts that in sectors where cp is high and ci

small, patents should be less popular. Empirical evidence establishes that propensity to

patent varies widely across sectors. However we do not currently have data on protec-

tion technologies, be it their cost or the extent of protection they confer. Interestingly

though, according to surveys of managers (Cohen et al. 2000), the sectors for which ex-

amples of protection technology come most readily to mind, electronic components and

semiconductors, are amongst the sectors where patents are judged to be least effective.4

We focused in our previous discussion on the most profitable protection technology,

but we characterize in the paper the symmetric mixed-strategy equilibria for arbitrary

technologies. This leads us to characterize a theoretically interesting pattern where typi-

cally a series of preemption game is followed with some probability by a war of attrition.

Imitators are involved in a series of preemption games taking place quasi-instantaneously

at the outset of the game. All the imitators that happen to enter pay the protection cost,

but fear mis-coordination and thus mix at each instant between waiting and imitating.

They pursue protection in the hope of securing some rents, anticipating that the initial

phase of massive entry will be followed with some probability by a waiting game played

by the imitators left to enter. Such a game involving delayed imitation arises because

once a sufficient number of imitators have entered, the protection cost is too large rela-

tive to the post-entry payoff and the next imitator to enter does so without paying for

protection. These imitators thus engage in a war of attrition delaying entry in the hope

3Other cases are considered in Section 4 of the paper.
421.3 percent for electronic components and 26.7 for semiconductors. The software industry is not

part of the survey.
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that a competitor enters before them.

Not only does our model provide strong predictions on the sources of inventor’s profits

in the absence of legal protection, but it can also be very informative on the design of

patent policy. Indeed, a patent is a specific example of a protection technology: cp is

the cost of applying for the patent, while ci measures the strength of the protection it

confers. Unlike previous literature that has mostly focused on ci (a rough proxy for

patent breadth), our paper underscores that the cost of applying for a patent becomes an

important policy lever once dynamics are accounted for. The cost of the patent influences

both the decision of the inventor to initially apply but also the decision of the imitators

who invent around the patent to themselves in turn apply. The relationship between

patent fees and the inventor’s profit is highly nonmonotonic, but our model suggests,

surprisingly, that an increase in patent fees may lead to a higher payoff for the inventor.

We also examine a different dimension of protection that appears essential in practice.

Knowledge is often diffused through scientists’mobility.5 Investing in protection can be

seen in this light as paying researchers sufficiently high wages so as to prevent them

from leaving the firm. We capture this idea in a variant of our model where we add

competition for the researcher following imitation. We show that the results are very

close to the results of our initial model but renders the cost of protection endogenous.

Furthermore we describe the mobility of researchers and their associated salaries.

Our paper is related to the growing literature on the sources of profits for innovators

in the absence of intellectual property rights (e.g. Boldrin and Levine (2007, 2008, 2010),

Maurer and Scotchmer (2002), Henry and Ponce (2009)). Boldrin and Levine (2007, 2008)

present theoretical justification and practical examples of innovation flourishing in the

absence of legal protection. Henry and Ponce (2009) show that the classical justification

for patent protection is challenged if the innovator can license the knowledge necessary

to reproduce the innovation. In our paper we do not consider licensing, but we revisit

the canonical model by introducing the possibility, common in many industries, to invest

in protection technologies. We also find that this can also change radically the results.

Our model also allows us to draw conclusions on the choice between patents and

secrecy. There is a growing literature on this question, building on the seminal paper by

Horstmann et al. (1985), who consider the signalling value of patents when innovators

have private information on the value of imitation for competitors. Kultti et al.(2007)

consider the comparison in a setting with multiple independent discoveries and where,

under secrecy, the idea becomes public with a certain exogenous probability. Anton and

Yao (2004) is closer to our work in the sense that the innovator can take strategic actions

to decrease competition even when she chooses secrecy. Indeed, the innovator can choose

a level of disclosure: more disclosure signals a better innovation and thus makes the

5Almeida and Kogut (1999) show for instance that scientific references cited in patent applications
reflect the employment histories of the researchers.
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imitator less aggressive in the competition stage. In our paper the strategy available to

the innovator to deter imitation is of a different kind and furthermore we insist on the

importance of dynamics.

Our paper also contributes to the literature on entry games with an infinite horizon of

play. Our game exhibits a theoretically interesting pattern of a series of preemption games

followed by a waiting game. Our approach towards analyzing continuous-time preemption

games builds upon Fudenberg and Tirole (1985), except that we have more than two

players (possibly) mixing over more than two actions.6 The existence of equilibrium

coordination failures directly relates our work to that of Dixit and Shapiro (1986), Cabral

(1993, 2004), Vettas (2000) and Bertomeu (2009). Vettas (2000) is of particular relevance

because he finds the remarkable result that the (continuation) payoff expected by an

incumbent conditional upon entry is nonmonotonic in the number of firms active in the

market. A similar nonmonotonicity result is derived in our setting, even though we allow

flow profits to strictly decrease in the number of firms active in the market, unlike Vettas

(2000). Our focus on continuous time allows us to dispense with his assumption, showing

that his insights carry over to settings in which decisions can be made very often.

We conclude the relationship of our paper with past literature by observing that it

is not usual to find entry timing games that display both preemption and waiting mo-

tives as play unfolds. Important exceptions are Sahuguet (2006) and Park and Smith

(2008). Our preemption-then-attrition result resembles that in Sahuguet’s (2006) anal-

ysis of volunteering for heterogeneous tasks under incomplete information about others’

preferences. Besides our focus on complete information, we differ from his analysis in

several other dimensions, especially in the questions analyzed (i.e., public good provision

vs. innovation protection and imitation).

The remainder of the paper is organized as follows. In Section 2 we introduce the

model. In Section 3 we solve for the equilibrium entry and protection decisions. In Section

4 we draw conclusions on the level of profits of the innovator in the absence of patents

and discuss specific examples. In Section 5 we discuss the implications for patent policy

while section 6 examines protection of knowledge through restraining worker mobility.

All proofs are presented in the appendix.

6In addition, players in our setting fail to coordinate their actions with positive probability along the
equilibrium path, whereas coordination failures only occur in their setting out of the equilibrium path.
In both settings, players randomize in continuous time in a non-independent manner for reasons that
can be already found in Fudenberg and Tirole (1985). In their framework, though, there exists a point in
time at which players have an incentive to perfectly correlate their entry actions when mixing. In ours,
there is no such a point because players always face the temptation of possibly profitable preemption
from the very beginning of the game.
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2 Model

We analyze a discrete-time game that lasts infinitely many periods of length ∆ > 0.

The time variable is denoted by t = 0,∆, 2∆, .... All players have the same per-period

discount factor δ∆. We will focus on the case in which ∆ is positive but converges to

zero, i.e., the continuous-time limit of the game.

The game involves one innovator and n−1 ≥ 2 (ex ante identical) potential imitators.

Prior to the start of the game, the innovator has discovered a new technology. The

imitators can then decide in each period whether to imitate or stay out of the market an

additional period. We consider the dynamics of imitation of this technology. The cost of

imitation depends on the strategic choices made by the innovator and the imitators who

previously entered. In any period t, we call the imitators who have already imitated and

entered the market the insiders, whereas we call the imitators who have not entered yet

the outsiders.

The innovator at time t = 0 and the imitators upon entry need to decide whether

to invest in protection. Protection technologies are characterized by two parameters ci

and cp (see Subsection 4.3 for examples). We denote cp > 0 for the one-time cost that

needs to be incurred to achieve protection. In any period, if the innovator and all insiders

incurred the protection cost cp > 0 upon entry, the outsiders who decide to enter need to

incur imitation cost ci > 0.7 This one-time cost ci gives instantaneous access to the same

technology. However, if one of the insiders did not pay cp upon entry, then imitation

becomes costless for all outsiders. We assume that the costs cp and ci remain fixed

throughout the game, in particular they are independent of the number of firms active

in the market.

In each period, an outsider can therefore choose among three actions:

• to imitate and pay the protection cost, an action denoted p

• to imitate and not pay the protection cost, an action denoted u

• not to imitate and wait another period, an action denoted w

Per-period profits depend on the number of firms that have entered. We denote πj

for the per-period individual profit if j ∈ {1, ..., n} firms (including the innovator) hold

the technology.8 Denoting the rate at which profits are discounted by firms by r, let

Πj ≡ πj/r represent the value of a perpetual stream of discounted profits collected by a

firm when a total of j ∈ {1, ..., n} hold the technology and no further entry takes place.

7The assumptions on the protection and imitation costs are somewhat reminiscent of Bernheim (1984).
8To avoid introducing several effects that would obscure the message of the paper, we assume that

the flow profits earned do not depend on whether the protection cost was incurred or not. In other
words, making the technology harder to reverse engineer does not directly affect the willingness to pay
of consumers or production costs.
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We mostly focus, in particular in Section 3, on the case where Πn > ci. This cor-

responds to a situation where all firms will eventually enter the market: even if n − 1

firms are already on the market and all the insiders and the innovator paid the protection

cost cp, imitation is still profitable. Note that this is a priori the worst case scenario for

innovation in the absence of legal protection since the protection technology does not

offer much of a guarantee.

We allow for mixed strategies and focus on symmetric Markov Perfect Equilibria

(MPE), where the state corresponds to the number of firms that hold the technology.

Markov perfection hardly needs any discussion given its overwhelming use in dynamic

games in which collusion is not the aspect to analyze. The focus on symmetric (mixed-

strategy) equilibria probably seems more restrictive. As Farrell and Saloner (1988) and

Bolton and Farrell (1990) convincingly argue, though, decentralized coordination mecha-

nisms involving anonymous players cannot be properly captured by asymmetric equilibria

in which (asymmetric) roles are very well defined among players. In addition, play based

on mixed strategies can be interpreted as play arising in a game in which each player

has private information about some disturbance affecting her final payoff.9 As pointed

out by Cabral (1993), coordination failures occur under this interpretation not because

of randomization but because players have incomplete information about others’ payoffs.

Given our restriction on Markovian play, we use the following notation throughout:

at the start of a period with k outsiders left to enter, we denote

• the expected discounted profits of an insider by Ik

• the expected discounted profits of an outsider if she decides to enter by Ok

3 The dynamics of protection and imitation

In this section we solve for the equilibria in the most interesting case where Πn > ci

(we consider the other case in Section 4). To help the reader through the arguments, we

first sketch the shape of the equilibrium. The finiteness of the pool of potential imitators

allows us to use backward induction when solving the infinite-horizon game, so we explain

the reasoning by working backwards as well.

In the final subgames, when many firms are already active, the protection cost cp

appears large compared to the expected profits that can be reaped. The next entrant

will thus enter without any protective measure, thereby creating an incentive for the

remaining imitators to delay imitation in the hope of free riding on the next entrant.

We actually find a critical number of outsiders J such that if the number of outsiders is

strictly less than J , they play a war of attrition to determine who is free ridden by others.

9This is the well-known purification argument in Harsanyi (1973).
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In earlier subgames with at least J outsiders, there is an incentive for imitators to

enter quickly, preempt the others by protecting their technologies and benefit from the

subsequent imitation delay. However, there is a risk of miscoordination where all imita-

tors would enter simultaneously. This creates the conditions for a preemption game. In

such a game at least one outsider will enter right away (and several could in fact enter

simultaneously). If after entry the number of outsiders is still less than J , another pre-

emption game is played, and so on and so forth until the number of active firms exceeds

J . Overall, we see that the pattern is a series of preemption games followed by a war of

attrition. Below, we make these arguments formal.

3.1 Solving the subgames with few outsiders

We note that in any subgame in which at least one of the insiders did not pay the

protection cost upon entry, all outsiders immediately imitate the technology at no cost.

Thus in the following discussion, we exclusively focus on subgames in which all firms who

hold the technology paid cp upon entry.

The last entrant

We begin our analysis by considering those subgames in which just one imitator is left

to enter the market. Since Πn > ci, the last outsider enters immediately. The expected

profit of an insider in such a subgame is I1 = Πn. The expected profit of the outsider

is O1 = Πn − ci if all insiders and the imitator paid the protection cost, and O1 = Πn

otherwise.

Two imitators left to enter

We now consider the subgames with only two outsiders. The first outsider needs to

incur cost ci in order to enter. He knows that, regardless of whether or not he pays the

additional protection cost, the remaining outsider will enter immediately. It is then clear

that action p (entering and paying the protection cost) is strictly dominated.

Therefore, the first entrant does not choose protection, and the second entrant will

incur a zero cost to imitate. This creates the conditions for a war of attrition where both

players mix between entering without paying the protection cost and waiting.10 Both

players prefer to be the second entrant, but also do not want to wait excessively as they

lose profits every period. As is standard in such games, in the limit when ∆ converges to

zero, the entry time of each imitator converges to an exponential distribution.

10As usual in dynamic games involving mixed strategies, it is more convenient to deal with behavioral
strategies.
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Lemma 1 In subgames with two outsiders, the only symmetric MPE is such that both

imitators mix between actions u (entering without paying the protection cost) and w

(waiting another period). As ∆ converges to zero, the entry time of each imitator con-

verges to an exponential distribution with hazard rate λ2 = r(Πn − ci)/ci. The expected

profit of the outsiders is O2 = Πn − ci, whereas each of the insiders expects to gain

I2 = µ2Πn−2 + (1− µ2)Πn, where µ2 ≡ r/(r + 2λ2).

The expected payoff of an outsider is O2 = Πn − ci since he is indifferent between

all entry times, including entering immediately. On the contrary, the insiders expect

significant profits since they will earn per-period profit πn−2 until the time of first entry,

which is exponentially distributed (with hazard rate 2λ2).

Three imitators left to enter

Before studying the complete dynamics, it is useful to understand in detail the res-

olution of subgames with three outsiders left. All players know that in any period, if a

single outsider enters and pays the protection cost, then the remaining two imitators will

play a war of attrition with speed of entry λ2. In such a game, we established in Lemma

1 that insiders earn expected profits of I2 = µ2Πn−2 + (1− µ2)Πn.

Thus, we first note that, if I2− cp ≤ Πn, playing action p is (weakly) dominated by u,

that is, outsiders will never pay the protection cost. The conditions can be equivalently

expressed as cp ≥ c∗2 ≡ µ2(Πn−2 − Πn). According to the same logic as in the previous

section, the three imitators will then play a war of attrition. We show in Lemma 2

that the individual entry time then follows an exponential distribution of parameter

λ3 ≡ r(Πn − ci)/(2ci).
On the contrary, if cp < c∗2, preemptively entering and paying the protection cost

becomes very attractive if the two other outsiders do not enter. There is however a risk

of coordination failure where all outsiders simultaneously enter and pay cp. This creates

the conditions for a preemption game described in Lemma 2. Outsiders mix between

p and w, that is, between entering and paying the protection cost and waiting. Entry

occurs almost instantaneously with probability one, and simultaneous entry of several

outsiders occurs with positive probability.

Lemma 2 In subgames with three outsiders, as ∆ converges to zero:

(i) If cp ≥ c∗2, the three outsiders mix between actions u and p. Counting from the

date at which the subgame is first reached, the individual distribution of entry times is

exponentially distributed with parameter λ3, where λ3 ≡ r(Πn − ci)/(2ci). Furthermore,

O3 = Πn − ci and I3 = µ3Πn−3 + (1− µ3)Πn, where µ3 ≡ r/(r + 3λ3).

(ii) If instead cp < c∗2, the three outsiders start playing a preemption game as soon

as this subgame is reached. The limiting distribution is such that imitators play w and p
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with strictly positive probability, and the payoff of the outsiders converges to O3 = Πn−ci,
whereas the payoff of the insiders converges to I3 = φ3(1)I2 + (1− φ3(1))Πn, where φ3(1)

is the probability of a single outsider entering.

Lemma 2 has a very natural interpretation. If the protection cost is relatively high,

it will not be paid upon entry, and therefore all outsiders wait in the hope that one of

them will move first. On the contrary, if the protection cost is low, it will be incurred

upon entry. The problem is then one of coordination. All outsiders would like to be the

only firm to enter and then enjoy payoff I2 while the others play a war of attrition later

on, but no one has an interest in paying the protection cost if other outsiders choose to

enter immediately.

3.2 Subgames with more than three imitators left to enter

The ideas uncovered in the subgames with three outsiders partially extend to the sub-

games with a larger number of outsiders. In particular, if cp is relatively large, the players

will end up playing a war of attrition.

For 2 ≤ k ≤ n − 1, let c∗k ≡ µk(Πn−k − Πn) from now on. We show in the following

lemma that in the subgame with k ≥ 3 outsiders, if cp ≥ c∗k−1, players mix between waiting

and entering without protection and the entry time is exponentially distributed. A key

part of the induction argument is that {c∗k}n−1
k=2 is a monotonically increasing sequence.11

This implies that, when cp ≥ c∗k−1, if one outsider chooses to enter by paying the protection

cost, the k − 1 remaining outsiders would then play a war of attrition since cp > c∗k−2.

Intuitively, the incentive to avoid paying the protection cost becomes more intense as

fewer imitators remain inactive, since the profit flow to be earned following entry becomes

relatively smaller.

Lemma 3 In the subgame with k ∈ {3, ..., n− 1} outsiders, if cp ≥ c∗k−1, the k outsiders

mix between actions p and w. Counting from the date at which the subgame is reached,

the time of first entry converges as ∆ goes to zero to an exponential distribution with

parameter kλk, where λk ≡ r(Πn− ci)/((k−1)ci). Outsiders expect to gain Ok = Πn− ci,
whereas insiders expect Ik = µkΠn−k + (1− µk)Πn, where µk ≡ r/(r + kλk).

We now consider the more complex case with k outsiders and cp < c∗k−1. It is essential

for our purposes to define J , the critical number of outsiders such that a war of attrition is

played if the number of outsiders is strictly less than J (to be precise, for k = 0, 1, ..., J−1).

Formally, we have J = inf{k : cp < c∗k−1}. We will now show that for J, ..., k, ..., n − 1

11Note that µk = (k − 1)ci/(kΠn − ci) is increasing in k, since ci < Πn implies that dµk/dk =
ci(Πn − ci)/(kΠn − ci)2 > 0. Taking into account that both µk and Πn−k − Πn are positive, the fact
that Πn−k and µk are both increasing in k then yields that c∗2 < c∗3 < ... < c∗n−1.
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(k ≥ J), a series of preemption games takes place. A priori, the players mix between the

three available actions, w, p and u.12 We denote ρa,k ≥ 0 for the probability with which

each outsider plays action a when k outsiders are left.

Recall that we are interested in equilibria where players can react instantaneously to

each others actions, i.e in situations where the time ∆ between successive play is small.13

In what follows, we will not be deriving the exact play in a symmetric equilibrium for

small values of ∆ but consider an approximation of equilibrium play that is arbitrarily

close to the true outcome.

More specifically, the approach will be the following. For a given length ∆ for a

period, in equilibrium, the mixing probabilities ρa,k(∆) for a ∈ {w, p, u} must be such

that outsiders are indifferent between all three strategies (i.e., Vp,k = Vu,k = Vw,k) and

such that these are indeed probabilities (i.e., ρa,k ∈ (0, 1) and ρu,k + ρp,k + ρw,k = 1).

What we will do is to solve for the solution of this system for ∆ = 0, what we call the

approximation of the equilibrium outcome,14 and we will show that this solution exists

and is unique. Given that the value functions are continuous in ∆ and in the probabilities,

this will be a close approximation of the equilibrium outcome for small enough values of

∆.

To illustrate further this method, consider the case of three players solved in Lemma

2. In that case we solved explicitly, for a fixed value of ∆, for the probabilities ρa,3(∆),

a ∈ {w, p, u}. In that case, we see from the solution presented in the proof of Lemma 2,

that taking the limit of all the probabilities as ∆ converges to zero (as we did) leads to

the same solution as directly solving the system consisting of equations (1)-(3) for ∆ = 0,

as was to be expected due to the continuity of the system.

We formally show in the proof of Lemma 4 below that the symmetric MPE can

be approximated for small enough values of ∆ by an equilibrium where the action of

entering without protection is played with zero probability, i.e., ρu,k = 0. Thus, in

the approximation we consider, the players will only mix between actions w and p. We

denote ρk = ρp,k for the individual probability of entry (so we have ρw,k = 1−ρk). Letting

C l
k−1 =

(
k−1
l

)
denote the binomial coefficient indexed by k−1 and l, we can calculate the

value of choosing action p as follows:

Vp,k =
k−1∑
l=0

C l
k−1(ρk)

l(1− ρk)k−1−lIk−1−l.

12We will show when proving Lemma 4 that, in the limit as ∆ goes to zero, action u is not chosen.
13As emphasized by Fudenberg and Tirole (1991) when dealing with preemption games, a continuous-

time version of the game cannot be directly used, and one is forced either to use approximations based
on discrete-time games or to properly expand strategy spaces to accommodate for such approximations,
as done by Fudenberg and Tirole (1985).

14Formally, what we mean by approximation of the equilibrium is a set of admissible mixing proba-
bilities ρa,k (a ∈ {p, u, w}) satisfying the following property: for any ε > 0, there exists ∆ε such that
∆ < ∆ε implies that |ρa.k(∆)− ρa,k| < ε, where ρa.k(∆) is the exact equilibrium play.
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The value of paying the protection cost when entering depends on how many other out-

siders simultaneously enter. If l other outsiders enter, the firm participates in the next

period as an insider in a subgame with k− 1− l outsiders. His expected gain in this case

is thus Ik−1−l. Overall, Vp,k is the expected value to action p given the distribution of

entry decisions of other outsiders.

Each of the k outsiders will mix between p and w so as to leave others indifferent

between these two actions, which yields

Vp,k − cp − ci = Πn − ci,

since Vw,k = Πn − ci for ∆ = 0. Letting Ik−1−l = Ik−1−l − Πn and

Fk(ρ) =
k−1∑
l=0

C l
k−1 ρ

l(1− ρ)k−1−l Ik−1−l,

the indifference condition can be equivalently written as:

Fk(ρk) = cp.

Thus, we have in subgames with k imitators left to enter (and such that cp < c∗k−1) that

the approximate mixing probability (provided it exists) must solve Fk(ρk) = cp. Largely

inspired by Vettas (2000), we now exploit the recursive nature of the problem and the

properties of Fk(·). We show that the symmetric MPE of the game can be approximated

for small values of ∆ by an equilibrium such that outsiders mix between actions p and w

with strictly positive probabilities. Furthermore, in this approximation, the probability

of playing action p in equilibrium decreases as the number of outsiders decreases.

The main properties of the Fk(·) functions, for k ∈ {J, ..., n− 1}, are presented in the

graph below.

It holds that FJ(ρ) is strictly decreasing in ρ, with FJ(0) > cp > FJ(1). There is thus

clearly a unique solution to FJ(ρ) = cp, ρJ . This is intuitive: Following entry by at least

one outsider, preemptive motives disappear and a war of attrition is played thereafter

(by definition of J). The speed of such a war of attrition is determined by the number

of other outsiders who enter. Given our previous finding that the continuation payoff of

an insider is lower in a war of attrition played by fewer outsiders, the best scenario is if

no one else enters (ρ = 0), whereas the worst scenario is if everyone else enters (ρ = 1).

The mixing performed in equilibrium is somewhere in between.

For k > J , the pattern is slightly different. In these cases Fk(ρ) is no longer decreasing

in ρ. It can be shown (see proof of Lemma 4) that the continuation payoff of an insider

(net of Πn) has an inverted-U shape as a function of k: Ik−1 < Ik−2 < ... < IJ−1

and IJ−1 > IJ−2... > I0. So Fk(ρ) also has an inverted-U shape as a function of ρ.
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Furthermore, we can show that FJ(0) > cp > FJ(1).

There is additional structure that can be exploited. In particular, Fk+1(·) starts off

below Fk(·), reaches its maximum when crossing Fk(·) and is then above Fk(·). A direct

consequence is that the equilibrium ρk is increasing in k, an intuitive property. In these

preemption games, players want to rush to enter to become one of the insiders during a

war of attrition that will likely follow. There is however a risk of excessive entry ex post.

In a subgame where many players have already entered, and hence k is close to J , this

risk becomes particularly severe, and the players in equilibrium therefore chose to enter

with a lower probability. The following lemma formalizes all these ideas.

Lemma 4 In subgames with k ∈ {J, ..., n − 1} outsiders, if cp < c∗k−1, then, for small

enough ∆, the symmetric MPE can be approximated by the following equilibrium:

(i) Outsiders mix only between actions p and w, and the probability ρk of playing p is

uniquely defined by Fk(ρk) = cp.

(ii) ρk is increasing in k.

(iii) Quasi-instantaneous entry by at least one outsider occurs.

We have therefore fully characterized the dynamics of imitation and protection in the

case where Πn < ci. In the next sections we draw a number of important implications of

these results.

4 Profits outside patents

We can now characterize profits of innovators in the absence of legal protection or in

cases where they strategically choose not to patent. We show that the profits depend on

the type of protection technologies available and can be very high even for expensive and

bad technologies.

Proposition 1 The equilibrium payoff of the innovator is bounded between Πn and Π1−
Π2. Furthermore, there exist protection technologies (ci, cp) such that the innovator’s

payoff can be arbitrarily close to these bounds.

Depending on the characteristics of the protection technology (ci and cp), the payoff to

the innovator can be as low as Πn or as high as Π1−Π2. In the first case, the rents of the

innovator are completely dissipated in the absence of patents. In the second case, even

though we considered an environment a priori unfavorable to innovators, where imitation

is instantaneous and protection technologies do not increase drastically the imitation cost

(ci < Πn), we see that the payoff to the innovator can be very high in the absence of legal

protection.

To understand more specifically the result, it is important to examine how the profits

of the innovator vary with the characteristics of the protection technology. Below, we

13



plot, for a given value of ci, how the innovator’s payoff (net of the protection cost) varies

with cp. The value of ci determines the increasing sequence {c∗k}n−1
k=2 . From the results of

the previous section, we know that if cp is in the interval (c∗k−1, c
∗
k), then in equilibrium,

n−1−k outsiders quasi-instantaneously enter, while the k remaining outsiders then play

a war of attrition. The payoff to the innovator is then capped by the value Ik, the value

of an incumbent when k outsiders remain (as illustrated in the graph). This value can

be close to Πn if cp is close to the upper limit of the interval or can be quite high if it is

close to the lower limit.

Interestingly, the maximum profit Π1−Π2 is attained for a protection technology that

does not perform very well (ci close but less than Πn) and is expensive cp > Π2. The idea

is the following: when ci is close to Πn the war of attrition is such that the expected first

entry is very late, since the payoff to the loser of the war is close to zero while the winners

earn a positive payoff. Imitators thus initially have high incentives to enter immediately,

preempt the others and benefit from this delay. However, the high cost of the protection

technology (cp > Π2) renders this strategy unprofitable, even for one imitator, and hence

all imitators are forced to play the war of attrition. The innovator’s payoff converges to

Π1 as ci approaches Πn, but she has to pay a protection cost that, in the most favorable

case, is just above Π2. For such a technology, the payoff to the innovator is thus high even

though there is no legal protection. The innovator also makes a significantly higher payoff

than imitators, so innovation can lead to a competitive advantage despite imitation. The

point is that the innovator can benefit from the imitators’ incentive to free ride on each

other.15

Our model can thus explain why innovation flourished in certain sectors where patent

protection was not available. Consider the software industry. Until recently, software was

not covered by patents and it was common for inventors to obfuscate the code: in other

words, transforming the readable source code into code difficult to use directly. Today,

various techniques are available and appear to be relatively cheap (low cp). But this

was not always the case and our theory could help explain why, even though patents did

not apply, this was nevertheless an industry characterized by relentless innovation (see

Boldrin and Levine (2007)).

Our results can also help us understand why in certain sectors, patents are much less

popular than secrecy. According to surveys of managers (Cohen et al. 2000), electronic

components and semiconductors are amongst the sectors where patents are judged to be

least effective (the software industry is not part of the survey). Of course there is no data

15It is interesting to note that if the innovator could choose her protection technology, and this was
then the only technology available to imitators, she would never choose an intermediate technologies,
that raise the imitation cost to values in the range (Πn,Π2). Indeed, with a technology such that ci = Πk,
k ∈ (2, .., n), the revenues are at best Πk, which is less than Π1 − Π2. The innovator then prefers to
choose a technology that allows cheaper imitation and creates for the imitators a strategic motive to
delay entry.
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measuring ci or cp. Interestingly though, these two sectors are those where protection

technologies can be most commonly observed. For instance, hardware obfuscation is a

technique by which the description or the structure of electronic hardware is modified

to intentionally conceal its functionality, making it significantly more difficult to reverse

engineer.16 We also observe technologies for sale that allow protection of integrated

circuits from reverse engineering.17 Our results provide a potential explanation for the

variations across sectors of the propensity to patent. We hope our theoretical work can

be used as a framework to conduct further empirical analysis of this question.

5 Design of patent policy

In the previous sections we have interpreted the investment in protection as paying to

add technological components making the product difficult to copy. However applying

for a patent can also be seen as an investment in protection. The cost cp is then the

cost of applying for the patent, while ci is the cost for imitators of inventing around the

patent.18 Note that ci can be seen as a measure of the breadth of the patent (see Denicolò

(1996) for a definition of this concept). Empirical analysis suggest that in the electronics

industries, patents increase imitation costs by only 7 percent (Mansfield et al (1981)),

suggesting that ci could be quite small.

The literature on the design of patent protection has generally focused on the length

and breadth of the patent as tools to provide rents for the innovator (see e.g. Gilbert and

Shapiro (1990), Klemperer (1990), Gallini (1992) or Denicolò (1996)). The cost of the

patent—or more specifically the level of renewal fees—, is only considered in the literature

as a tool, in combination with the length, for an uninformed designer to screen among

innovations of different value. One exception is the paper by Hunt (2006), that shows

that higher patent costs can increase investments in R&D when the exogenously given

degree of overlap of the innovating firms is sufficiently important. Our paper, based on a

completely different mechanism, shows that, surprisingly, increasing the cost of patenting

can be a way to yield profits for innovators.

It can of course be argued that ci, the cost of inventing around the patent will increase

each time an imitator enters. We plan to examine a variant of the model including this

feature.

.... RESOLUTION

This interpretation of our model thus provides potentially testable implications on the

effect of increasing the patenting cost cp. In particular we find that an in cp can increase

16There are other techniques, some cryptography-based.
17An example is given by the United States patent 7128271, described as “a semiconductor integrated

circuit having a reverse engineering protection part that can be easily implemented”.
18Note that according to Cohen et al., ease of inventing around is most often cited by managers as the

reason for not patenting.
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the profits an innovator can expect from applying for a patent and thus make her more

likely to choose patenting over secrecy. However, the overall effect of an increase in cp on

the total number of patents granted is ambiguous as, even though more innovators would

patent, later ”imitators” would apply for fewer patents.

There is a growing body of empirical work (surveyed in de Rassenfose and van Pot-

telsberghe de la Potterie (2010)) examining the influence of patenting fees on patenting

behavior. Most of these studies show that an increase in fees tends to decrease the num-

ber of patents (see for instance Eatum and Kortum (1996), Nicholas 2011). However, to

test more directly our prediction, we need empirical evidence of patenting strategies of

the ”original innovators”. Moser (2011) shows, using data on 19th century world fairs

where exhibitors were presumably only genuine inventors, that while fees for carrying the

patent to full term were $37000 in Britain compared to $612 in the US, the respective

patented innovation represented 11.1 percent for Britain and 15.3 in the US, suggesting

a small effect of patenting costs. Note also that Nicholas (2011), even though he demon-

strates that a decrease in fees increased the number of patents granted, also shows that

it decreased the patent quality, which is consistent with the mechanism we present.

We attempt to examine further the validity of our prediction by studying the corre-

lation between the level of patenting fees and the percentage of innovators reporting to

have used patents to protect their innovations in the European innovation survey CIS.19

Using a 4 percent interest rate to calculate the present value of fees of a patent held to

full term, we find a positive and significant correlation of 0.46 between patenting fees and

use of patents by innovators (see Table 1). Of course more systematic empirical work

is needed, but this preliminary evidence confirms our potentially surprising effect of fees

on innovator’s profits and furthermore underlines the fact that empirical work should at-

tempt to distinguish patents by original inventors from patents by imitators who invent

around the original patent.

6 Worker mobility

In the previous sections we focused on cases where the innovator and the initial imitators

could protect themselves form further imitation by either making their technology hard

to reverse engineer or by applying for a patent. However, knowledge of how to reproduce

the technology is embodied in the researchers who developed it. Another key dimension

of protection is therefore paying wages sufficiently high so that these researchers do not

leave the firm. In the current section we examine the dynamics of wages. We show that

this is a way of making the protection cost cp endogenous.

19We use the aggregate data from CIS 4, reported in Table 2 of the Eurostat document “Innovative
enterprises and the use of patents and other intellectual property rights”. For patent fees, we use the
data reported in the webpage of the European Patent Office.
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There is a growing literature examining the mobility of scientists and the associated

diffusion of knowledge. Lewis and Yao (2006), in a situation where some ideas developed

in one firm can be potentially more useful in another, show how allowing ex ante for

mobility of researchers can be optimal from the innovating firm’s point of view. Kim and

Marschke (2005) examine a model where innovators can choose between patenting and

secrecy and show, both theoretically and empirically, that patents become more attractive

when there is a high risk of scientists leaving with firms secrets. Franco and Mitchell

(2008) compare situations where clauses restraining worker mobility can be included in

contracts to cases where this is illegal.20 The novelty of our approach is that it allows us

to study fully dynamic aspects of employment in situations where firms can imitate in

two distinct ways: in-house research or poaching a scientist from a different firm.21

We modify our model in the following way to address the question. We suppose that

there are n + 1 firms. Firm i is considered to be a pair composed of a financier fi and

researcher ri. As in our previous model, the game starts with a firm, that we denote firm

1, having innovated. Researcher r1 therefore has the knowledge of how to reproduce the

invention. A firm that has not yet imitated and decides to do so can do it in two ways.

It can hire a researcher of a previously successful firm or use its in house researcher, who

is uninformed and can develop the invention at cost ci.

We consider a specific model for the hiring process. After a firm has successfully

developed an invention or successfully imitated, a second price auction for the researcher

is run between this firm and all the remaining outsiders. The winning bidder hires the

worker and pays the second highest bid. We suppose furthermore that if the winning

bidder is the current employer of the researcher, then this researcher will stay with the

firm forever. A natural interpretation of this assumption is that the current firm is par-

ticipating in the bidding to make the researcher sign a non competition clause (covenant

to compete). Thus, in that case, the firms not having yet imitated can only do so through

in house research at cost ci.

We present the results in the case where ci < c∗2 that illustrates the main intuitions.22

Proposition 2 If ci < c∗2, then if the number of remaining imitators:

1. is larger than 4, one of the imitators wins the auction and pays the researcher c∗2 +ci

2. is equal to 3, one of the imitators wins the auction and pays the researcher between

c∗2 and c∗2 + ci

20They show that these so called ”covenant to compete” can explain the initial advantage of Mas-
sachusetts’ Route 128 and the subsequent overtaking by the Sillicon Valley.

21Note that contrary to most papers in the literature, a notable exception being Franco and Mitchell
(2008), we focus on a case where the creation of a spin-out by a researcher leaving the firm decreases
total profits, i.e does not create a differentiated product, although this case could be considered in our
framework.

22The general case presents similar dynamics.
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3. is equal to 2, the researcher stays with the current employer for a bonus between 0

and c∗2 and the remaining two imitating firms play a war of attrition

4. is equal to 1, the researcher moves for a zero wage

Furthermore, the profits of the innovator are: I2 = µ2Πn−2 + (1− µ2)Πn, where µ2 ≡
r/(r+2λ2) and the original researcher accumulates salaries of at least c∗2 +(n−3)(c∗2 +ci).

We first observe that the timing of imitation is the following: n− 2 firms successively

and quickly enter by winning the auction and hiring the informed researcher. At this

point, when only 2 imitators are left, the last firm having entered will pay a sufficiently

high bonus so as to win the auction and keep the researcher. The remaining two imitators

can thus only enter by conducting in house research at cost ci and will wait to do so in

the hope that their competitor does it before them and that they can subsequently hire

the informed researcher at a zero wage.

We note that this path of entry is very similar to the one identified in the general

model of section 3 for the case cp < c∗2. In that case a series of preemption games were

played and when two imitators were left, they played a war of attrition with the same

probability of entry λ2. The main difference is that in the current setting we do not have

the preemption phase. Outsiders still have an incentive to enter quickly, but the auction

solves the mis-coordination problem characterizing preemption games, since the auction

determines a unique winner.

Proposition 3 can be seen as providing a microeconomic foundation for our assumption

of a fixed protection cost. Indeed, as long as the number of outsiders is greater than four,

the imitators who enter pay a premium of c∗2 above the imitation cost ci, premium that can

be interpreted as the cost of protection. The intuition is the following: the early imitators,

by paying the premium c∗2, are purchasing the right to benefit from the delay in the war

of attrition. The order of entry among those does not influence their expected profits

since with the auction there is no mis-coordination. All the initial entrants therefore pay

the same price for entry ci + c∗2.

We characterize the level of bonuses on the equilibrium path. Naturally, as the number

of remaining imitators decreases, the bonus that the researcher obtains decreases. We

note that neither the innovator, nor the imitators, attempt to keep their researcher until

only two imitators are left. The intuition is the following: the innovator and the initial

imitators are free riding on the protection effort of the n − 3rd entrant. In previous

subgames, there is no point in trying to keep the researcher since the remaining imitators

will in any case try to rush to enter, and if they cannot do it by hiring a researcher,

they will do it through in house research. Keeping the researcher has even a negative

effect on expected profits since it opens the way to a preemption game with a risk of

mis-coordination and excessive entry.
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7 Conclusion

In this paper we show that introducing in canonical models of innovation the possibility

that inventors can invest to make their products difficult to reverse engineer challenges

the received wisdom on the need for intellectual property protection. Surprisingly the

protection technologies that yield the highest returns for the innovator are expensive and

do not protect very well. We also show our model has implications for the design of the

patent system and for the patterns of employment in innovative industries.

We believe our model and results could be the basis for interesting empirical work.

At the very least it underlines the need for more comprehensive data on two dimensions.

First, little is still known on the cost of reverse engineering inventions, and how these

costs vary by industry. Second, little information is available on protection technologies,

their cost, the level of protection they confer. Although there is a large body of anecdotal

evidence showing that technological protection is commonly used, there is no systematic

measurement allowing for more detailed empirical analysis.

Finally, we want to suggest that our model can also contribute to the understanding

of the path of diffusion of innovations. Starting with the seminal paper by Griliches

(1957), numerous papers have documented the fact that the pattern of adoption of new

technologies is typically S-shaped: slow initial adoption is followed by a quick acceleration

and then slowing down.23 If we view the process of imitation as a process of adoption

of a technology, our paper provides a different theoretical foundation for the delay in

adoption.24 Firms wait to adopt in the hope that the technology will enter the public

domain at some point. Of course the path is more a step function than a smooth S-shape.

We could however imagine introducing uncertainties, for instance in the time needed to

obtain an invention after having paid the imitation cost, that could generate a smoother

path. This could be the object of interesting future work.

23There are numerous papers proposing a theoretical explanation for this pattern of adoption. Some
are non strategic and often based on models of diffusion of information. Others consider firms that are
strategic in their adoption decisions (Reinganum, Fudenberg and Tirole (1985), Ruiz Aliseda and Zemsky
(2006)).

24Note that the empirical literature is not explicit about what is the process of adoption of a technology,
whether it is purchasing from the inventor or whether it comes through imitation.
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Appendix

Proof of Lemma 1. Fudenberg and Tirole (1991) show that the unique symmetric

equilibrium of the discrete-time war of attrition with short period lengths converges to

the unique symmetric equilibrium of the war of attrition in continuous time. This leads

us to prove the result using the continuous-time version of the game.

Consider the expected payoff of a firm if she chooses to enter at time τ2 given that the

other imitator chooses their entry time according to an atomless and gapless distribution

F2(·) with full support on [0,∞) and density f2(·). Given that the other firm has made

an unknown draw from F2(·), a firm that enters at τ2 expects to gain

V̂2(τ2) =

∫ τ2

0

Πne
−rsdF2(s) +

∫ ∞
τ2

(Πn − ci)e−rτ2dF2(s).

In a mixed-strategy Nash equilibrium, the firm should be indifferent among all possible

entry times, which formally means that we should have that dV̂2(τ2)/dτ2 = 0 for all

τ2 ≥ 0. Straightforward differentiation using that
∫∞
τ2
dF2(s) = 1− F2(τ2) yields that

dV̂2(τ2)

dτ2

= e−rτ2 [cif2(τ2)− r(Πn − ci)(1− F2(τ2))].

Letting h2(τ2) ≡ f2(τ2)/(1−F2(τ2)) denote the hazard rate of F2(·) and equating dV̂2(τ2)/dτ2

to zero yields that the hazard rate is constant and equal to h2(τ2) = r(Πn − ci)/ci, so

F2(τ2) = 1 − e−λ2τ2 , where λ2 ≡ r(Πn − ci)/ci. Given that a probability distribution is

exponential if and only if its hazard rate is constant, the individual entry time follows an

exponential distribution with parameter λ2 = r(Πn − ci)/ci.
Furthermore, since a firm is indifferent among all the pure strategies played with

positive density, the expected gain of an outsider converges to O2 = Πn − ci.
We have shown that both outsiders make independent draws from an exponential dis-

tribution with the same hazard rate λ2, so the time τ̂ of first entry must be exponentially

distributed with parameter 2λ2. The expected payoff for an insider is therefore given by:

I2 =

∫ ∞
0

(∫ τ̂

0

πn−2e
−rsds+

∫ ∞
τ̂

πne
−rsds

)
2λ2e

−2λ2τ̂dτ̂ .

Integrating and letting µ2 ≡ r/(r + 2λ2) yields

I2 = µ2Πn−2 + (1− µ2)Πn.

Proof of Lemma 2. (i) As indicated in the main text action p is weakly dominated

if cp ≥ c∗2. The insiders mix every period between u and w. Suppose that two firms draw
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their time of imitation with an unprotected technology using an atomless and gapless

distribution function F3(·) with full support on [0,∞). Denoting these (random) draws

by s and s′, we have that the expected payoff of a firm if he imitates at time τ3 with

probability one (conditional upon no other firm imitating earlier) is

V̂3(τ3) =

∫ τ3

0

Πne
−rsf3(s)(1− F3(s))ds+

∫ τ3

0

Πne
−rsf3(s′)(1− F3(s′))ds′

+(1− F3(τ3))2(Πn − ci)e−rτ3

Because it must hold that dV̂3(τ3)/dτ3 = 0 for all τ3 ≥ 0, straightforward computations

show that we must have h3(τ3) ≡ f3(τ3)/(1−F3(τ3)) = r(Πn− ci)/(2ci). Hence, F3(τ3) =

1 − e−λ3τ3 , where λ3 ≡ r(Πn − ci)/(2ci). Each of the imitators left expects to gain

O3 ≡ Πn − ci (since V̂3(τ3) = Πn − ci for τ3 = 0). In turn, the fact that the time

at which imitation without protective measures takes place is exponentially distributed

with parameter 3λ3 yields that the payoff expected by the firms active in the market with

a protected technology is

I3 = µ3Πn−3 + (1− µ3)Πn,

where µ3 ≡ r/(r + 3λ3).

(ii) We now consider the case cp < c∗2. In principle, firms will mix using the three

actions available to each of them, namely w, p and u. We denote ρa,k ≥ 0 for the

probability with which one of the outsiders plays action a when k outsiders remain to

enter. We let Va,k denote the outsider’s payoff when following action a ∈ {w, p, u}. We

must have that Vw,3 = Vp,3 = Vu,3 in a mixed-strategy equilibrium, where

Vp,3 = ρ2
w,3(πn−2∆+I2δ

∆)+2ρw,3(1−ρw,3)(πn−1∆+Πnδ
∆)+(1−ρw,3)2Πn− (ci+cp) (1)

Vu,3 = ρ2
w,3(πn−2∆ + Πnδ

∆) + 2ρw,3(1− ρw,3)(πn−1∆ + Πnδ
∆) + (1− ρw,3)2Πn − ci (2)

and

Vw,3 = ρ2
w,3(Vw,3δ

∆) + 2ρw,3ρp,3O2δ
∆ + (ρw,3 + ρp,3 + 1)ρu,3Πnδ

∆ + ρ2
p,3(Πn − ci)δ∆ (3)

Because Vp,3 = Vu,3, it holds after using the fact ρw,3 ≥ 0 that

ρw,3 =

√
cp

(I2 − Πn)δ∆

Using the working hypothesis that cp < c∗2 ≡ I2 − Πn yields that
cp

(I∗2 − Πn)δ∆
< δ−∆, so

ρw ≤ 1 for ∆ > 0 close enough to zero.

Because ρu,3 = 1 − (ρw,3 + ρp,3) and O2 = Πn − ci, the expression for Vw,3 can be
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rewritten as follows:

Vw,3 =
(1− ρ2

w,3)Πn − ρp,3(ρp,3 + 2ρw,3)ci

δ−∆ − ρ2
w,3

.

Equating Vu,3 and Vw,3 yields the value for ρp,3 ≥ 0. We find, for small ∆ > 0 that

ρw,3 ≈
√

cp
µ2(Πn−2 − Πn)

,

ρp,3 ≈ 1−
√

cp
µ2(Πn−2 − Πn)

,

and

ρu,3 ≈ 0.

To make exposition notationally simpler, let us normalize to zero the date at which the

subgame with three imitators starts. Given m periods of play between time 0 and some

fixed time t > 0, it holds that the probability that no firm has imitated and protected

her technology once time t has elapsed is (ρw,3)3m = (ρw,3)3t/∆ (since m = t/∆), which

converges to zero as ∆ converges to zero for any arbitrarily chosen t > 0. We then must

have that there is probability one that at least one imitator will imitate and protect his

technology (almost) instantaneously.

We conclude the proof by characterizing the probability distribution over entry out-

comes at time 0 and equilibrium payoffs. Because the probability of no entry at any

point in time is (1 − ρp,3)3, it holds that the probability that at least one imitator

enters is 1 − (1 − ρp,3)3. Conditional upon at least one firm entering, we then have

that φ3(3) = (ρp,3)3/(1 − (1 − ρp,3)3), φ3(2) = 3(1 − ρp,3)(ρp,3)2/(1 − (1 − ρp,3)3) and

φ3(1) = 3(1 − ρp,3)2ρp,3/(1 − (1 − ρp,3)3), where φk(l) denotes the probability that l ≥ 1

imitators enter simultaneously at 0 given that there are k ≥ l of them. We finally observe

that an outsider’s continuation payoff at the beginning of these subgames is approxi-

mately O3 = Πn − ci (since Vp,3 = Vu,3 = Vw,3 ≈ Πn − ci for small enough ∆ > 0). Since

I1 = I0 = Πn, the expected payoff earned by an insider is

I3 = φ3(1)I2 + (1− φ3(1))Πn.

Proof of Lemma 3. We prove the result by induction. Lemma 2 established the

result for k = 3, so it only remains to prove that it holds for k ≥ 4 whenever it is true

for k − 1. So suppose that the result holds for k − 1, and consider the subgames with k

outsiders when cp ≥ c∗k−1.

Let us focus on a player’s incentive to enter and pay the protection cost at a certain

period. Since c∗j < c∗k−1 for all j < k − 1, he knows when choosing action p that action p
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being simultaneously chosen by l ≥ 0 other outsiders will result in the remaining outsiders

playing a war of attrition (by the induction hypothesis). Clearly, the highest payoff that

can be achieved is the one attained when no other player enters simultaneously, i.e.,

l = 0. Thus, the highest payoff he can obtain by entering and paying the protection cost

is Ik−1 − cp = µk−1Πn−k+1 + (1 − µk−1)Πn − cp. Since cp ≥ c∗k−1 implies Ik−1 − cp < Πn,

it then follows that no outsider must be willing to enter by paying the protection cost in

subgames with k outsiders.

The k outsiders will therefore mix between waiting and entering without protection.

Suppose that the competitors draw their time of imitation with an unprotected technology

using an atomless and gapless distribution function Fk(·) with full support on [0,∞). We

then have that the expected payoff of a firm if he imitates at time τk with probability

one (conditional upon no other firm imitating earlier) is

V̂k(τk) = (k − 1)

∫ τk

0

Πne
−rsfk(s)(1− Fk(s))ds+ (1− Fk(τk))k−1(Πn − ci)e−rτk

In order for such a firm to be indifferent between all the possible imitation times, it is easy

to show that we must have that Fk(τk) = 1− e−λkτk , where λk ≡ r(Πn − ci)/((k − 1)ci).

Each of the outsiders expects to gain Ok ≡ Πn − ci (since V̂k(τk) = Πn − ci for τk = 0).

In addition, because the time at which the first imitation takes place is exponentially

distributed with parameter kλk, the expected profit of an insider is given by

Ik = µkΠn−k + (1− µk)Πn,

where µk ≡ r/(r + kλk).

Proof of Lemma 4. We first show that we have ρu,k = 0. We show this result by

induction starting at k = J . For ∆ = 0, we have

Vu,J = Πn − ci

and

Vw,J = Pr[Xw,J = J − 1, Xp,J = 0, Xu,J = 0] Vw,J +
J−1∑
m=1

J−1−m∑
l=0

Pr[Xw,J = J − 1− l −m,Xp,J = l, Xu,J = m] Πn +

J−1∑
l=1

Pr[Xw,J = J − 1− l, Xp,J = l, Xu,J = 0] OJ−l,

where Pr[Xw,k, Xp,k, Xu,k] denotes the probability that Xw,k outsiders happen to choose

w, Xp,k outsiders happen to choose p and Xu,k outsiders happen to choose u. We know

that for all j < J , a war of attrition is played and, according to lemma 3, Oj = Πn − ci,
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so the system of equations can be rewritten as

Vu,J = Πn − ci

and

Vw,J = Pr[Xw,J = J − 1, Xp,J = 0, Xu,J = 0] Vw,J

+ (1− Pr[Xw,J = J − 1, Xp,J = 0, Xu,J = 0]) Πn

−
J−1∑
l=1

Pr[Xw,J = J − 1− l, Xp,J = l, Xu,J = 0] ci

In a mixed strategy equilibrium, the player is indifferent between all strategies in the

support, so we must have Vu,J = Vw,J , which implies that

J−1∑
l=1

Pr[Xw,J = J−1−l, Xp,J = l, Xu,J = 0] / (1−Pr[Xw,J = J−1, Xp,J = 0, Xu,J = 0]) = 1.

This holds if and only if

J−1∑
l=0

Pr[Xw,J = J − 1− l, Xp,J = l, Xu,J = 0] = 1,

whence we get that ρu,J = 0. Furthermore, this implies that OJ = Πn − ci, and the

property is therefore true for k = J . The reasoning follows exactly the same lines for

larger values of k.

After showing that ρw,k + ρp,k = 1, we proceed to pin down the value taken by the

mixing probability ρk ≡ ρp,k. Consider first the ”last preemption game”, i.e the subgame

where J outsiders are left to enter. As shown in the main text, the indifference between

actions p and w is defined by

FJ(ρJ) = cp,

where

FJ(ρ) =
J−1∑
l=0

C l
J−1 ρ

l(1− ρ)J−1−l IJ−1−l.

Note that following entry by at least one outsider, a war of attrition is played (by

definition of J). The speed is determined by the number of other insiders who enter.

Note that according to Lemma 3, IJ−1−l = µJ−1−l[Πn−(J−1−l)−Πn] = c∗J−1−l. We showed

previously that c∗k is an increasing function of k. So we have IJ−1 > IJ−2 > ... > I0. So

it can be immediately observed that FJ(ρ) is a strictly decreasing function of ρ. Indeed

increasing ρ shifts the distribution to states where the payoff is lower.

Furthermore, J = inf{k : cp < c∗k−1} implies that FJ(0) = IJ−1 = c∗J−1 > cp. Since
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FJ(1) = I0 = 0 and FJ(ρ) is a continuous and strictly decreasing function, it then follows

that the equation FJ(ρ) = cp has a unique solution ρJ ∈ (0, 1).

Just as we did in the proof of Lemma 2, it can be shown that

φJ(l) = C l
J

(ρJ)l(1− ρJ)J−l

1− (1− ρJ)J
,

which is the conditional probability that l players enter simultaneously conditional on at

least one entering.

We now work recursively with Fk+1(ρ) for k ≥ J . To do so, we first explore some

key properties of Fk+1(ρ). In particular, we claim that the following properties hold for

k ≥ J :

• Property 1:
∂Fk+1

∂ρ
(ρ) = (

k

1− ρ
)(Fk(ρ)− Fk+1(ρ)).

• Property 2:
∂Fk+1

∂ρ
(0) > 0.

• Property 3:

Ik = Fk+1(ρk).

Given these properties (which we show to hold below), the proof of the lemma will

be complete. To see this, let k ≥ J throughout, and note from Properties 1 and 2 that

we can conclude that Fk+1(ρ) is increasing at zero, reaches a maximum when Fk+1(ρ)

and Fk(ρ) cross and is then decreasing. Furthermore, we know that Fk+1(1) = I0 = 0.

So to establish that Fk+1(ρ) = cp has a unique solution it is sufficient to show that

Fk+1(0) > cp. To prove it, note that we have Fk+1(0) = Ik, and Property 3 implies that

Ik = Fk+1(ρk), so it holds that Fk+1(0) = Fk+1(ρk). Because Fk+1(ρ) is increasing at zero

according to Property 2, the unique maximum must be reached somewhere between 0

and ρk. According to Property 1, we know that Fk+1(ρ) > Fk(ρ) for ρ ≥ ρk, and therefore

Fk+1(ρk) > Fk(ρk). Taking into account that Fk+1(ρk) = Fk+1(0), as we just showed, and

that Fk(ρk) = cp, it follows that Fk+1(0) > cp, as desired.

So we can finish the proof of the lemma by just proving each of the properties described

above. To show that Property 1 holds, note that we have

Fk(ρ) =
k−1∑
l=0

C l
k−1 (ρ)l(1− ρ)k−1−l Ik−1−l

and

Fk+1(ρ) =
k∑
l=0

C l
k (ρ)l(1− ρ)k−l Ik−l.
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So we can establish that

Fk(ρ)− Fk+1(ρ) =
k−1∑
l=0

C l
k−1 (ρ)l(1− ρ)k−1−l Ik−1−l −

k∑
l=0

C l
k (ρ)l(1− ρ)k−l Ik−l

=
k∑
l=1

C l−1
k−1 (ρ)l−1(1− ρ)k−l Ik−l −

k∑
l=1

C l
k (ρ)l(1− ρ)k−l Ik−l − (1− ρ)k Ik.

Consider

∂Fk+1

∂ρ
(ρ) =

k∑
l=0

C l
k

[
l(ρ)l−1(1− ρ)k−l − (k − l)(ρ)l(1− ρ)k−l−1

]
Ik−l

=
k∑
l=0

C l
k (ρ)l−1(1− ρ)k−l−1 [l − kρ] Ik−l

=
k∑
l=1

C l
k (ρ)l−1(1− ρ)k−l−1 [l − kρ] Ik−l − k(1− ρ)k−1Ik−l.

We develop the first term of this formula to obtain:

∂Fk+1

∂ρ
(ρ) =

k∑
l=1

lC l
k (ρ)l−1(1−ρ)k−l−1 Ik−l−k

k∑
l=1

C l
k (ρ)l(1−ρ)k−l−1 Ik−l−k(1−ρ)k−1Ik−l.

Given that C l−1
k−1 = lC l

k/k, and using the formula for Fk(ρ) − Fk+1(ρ) established above,

we have:
∂Fk+1

∂ρ
(ρ) = (

k

1− ρ
)(Fk(ρ)− Fk+1(ρ)),

as claimed.

To prove Property 2, note that

∂Fk
∂ρ

(ρ) =
k−1∑
l=0

C l
k−1

[
l(ρ)l−1(1− ρ)k−1−l − (k − 1− l)(ρ)l(1− ρ)k−l−2

]
Ik−1−l

=
k−1∑
l=0

C l
k−1 (ρ)l−1(1− ρ)k−l−2 [l − (k − 1)ρ] Ik−1−l,

so
∂Fk
∂ρ

(0) = k(1− (k − 1))Ik−2 > 0.

In the last place, to prove Property 3, denote Îk(ρ) for the expected payoff to an insider

when there are k outsiders who choose to enter with probability ρ (the expectation being
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conditional upon at least one outsider entering). Then

Îk(ρ) =
k∑
l=1

C l
k

(ρ)l(1− ρ)k−l

1− (1− ρ)k
Ik−l,

so straightforward manipulations yield:

(1− (1− ρ)k) Îk(ρ) =
k∑
l=1

C l
k (ρ)l(1− ρ)k−l Ik−l

=
k∑
l=0

C l
k (ρ)l(1− ρ)k−l Ik−l − (1− ρ)k Ik

= Fk+1(ρ)− (1− ρ)k Ik.

We know that Îk(ρk) = Ik, so using the previous expression for ρ = ρk, we have

(1− (1− ρ)k) Ik = Fk+1(ρk)− (1− ρ)k Ik,

that is,

Ik = Fk+1(ρk).

This completes the proof of Properties 1-3, and hence the proof of Lemma 4.

Proof of Prop 3.

We solve the model by backwards induction, using the notation Ok for the expected

payoff of an outsider in a subgame with k outsiders left, Ik for the payoff of an insider

who entered in one of the previous subgames and I lk for the payoff of the insider who just

entered.

k = 1: Regardless of the result of bidding, the outsider will come in, so the insider

bids his valuation, zero. Outsider gets the researcher for a zero wage. Payoffs are:

I1 = I l1 = Πn and O1 = Πn

k = 2: We first study the subgame following an outcome of the auction such that the

insider won the bidding. There are therefore two outsiders who can only enter by doing

the research in-house by paying cost ci. This leads to a war of attrition as in section 3.

Payoffs are then µ2Πn−2 + (1− µ2)Πn for the insider and O2 = Πn − ci for outsiders

We now examine the bidding strategies. The insider if he wins with bid w, gets

µ2Πn−2 + (1−µ2)Πn−w and if he loses Πn. Weakly dominant strategy in a second price

auction is for the insider to bid his valuation c∗2 (where c∗2 = I2 − Πn = µ2[Πn−2 − Πn])

The payoffs for outsiders are the following: if he wins with bid w, gets Πn−w, if he loses

to insider Πn−ci and if he looses to outsider Πn. Since c∗2 > ci , the insider by bidding his
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valuation c∗2, wins and pays price between 0 and ci, payoffs are I2 = µ2Πn−2 + (1−µ2)Πn,

I l2 =∈ [I2 − ci, I2] and O2 = Πn − ci

k = 3: We first study the subgame following an outcome of the auction such that the

insider won the bidding. When an outsider comes in, he becomes the last insider in the

next subgame and gets I l2−ci, which is at least I2−2ci. If one of the competing outsiders

enters, he gets O2 = Πn − ci. Given that c∗2 > ci implies I2 − 2ci > O2 = Πn − ci, this

leads to a preemption motive and the expected payoff of the outsiders in such a subgame

is Πn − ci and the insiders obtain an expected payoff strictly less than I2 (since there is

a risk of miscoordination).

So if we consider the bidding, the insider knows that if he wins the bidding he gets a

payoff strictly less than if he looses and gets I2. He always bids zero.

The outsiders bid their value: b = I l2 − O2 ∈ [c∗2, c
∗
2 + ci]. We have for insiders

I3 = I l3 = I2, and for outsiders O3 = 1
3
(I l2 − b) + 2

3
O2 = 1

3
(I l2 − (I l2 −O2)) + 2

3
O2 = O2

k = 4: We first study the subgame following an outcome of the auction such that the

insider won the bidding. When an outsider comes in, he becomes the last insider in the

next subgame and gets I l2 − ci, which equals I2 − 2ci. If one of the competing outsiders

enters, he gets O2 = Πn − ci. Given that c∗2 > ci, this leads to a preemption motive and

the expected payoff of the outsiders in such a subgame is Πn− ci and the insiders obtain

an expected payoff strictly less than I2 (since there is a risk of miscoordination).

So if we consider the bidding, the insider knows that if he wins the bidding he gets a

payoff strictly less than if he looses and gets I2. He always bids zero.

The outsiders bid their value: b = I l3−O3 = c∗2 +ci. We have for insiders I4 = I l4 = I2,

and for outsiders O4 = 1
4
(I l3 − b) + 3

4
O3 = O3 = Πn − ci

The result can therefore be shown by induction
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Table 1

Country Discounted patent cost Proportion using patents

Belgium 2560 11

Danemark 4207 19.6

Germany 7488 20.1

Greece 4154 3

Spain 2854 11.8

France 3258 22.2

Italy 3870 13.4

Luxemburg 1717 8.8

Netherlands 6398 14.4

Portugal 3199 7

Finland 5265 18.2

Norway 7419 17.1
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