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Abstract

Online platforms, such as Google, Facebook, or Amazon, are constantly expanding

their activities, while increasing the overlap in their service offering. In this paper, we

study the scope and overlap of online platforms’activities, when they are endogenously

determined.

We model an expansion game between two online platforms offering two different

services to users for free, while selling user clicks to advertisers. At the outset, each

platform offers one service, and users may subscribe to one platform or both (multi-

homing). In the second stage, each platform decides whether to expand by adding the

service already offered by its rival. Platforms’expansion decisions affect users’mobility,

and thus the partition of users in the market, which, in turn, affects platform prices and

profits.

We analyze the equilibrium of the expansion game, demonstrating that, in equilib-

rium, platforms may decide not to expand, even though expansion is costless. Such

strategic "no expansion" decisions are due to quantity and price effects of changes in

user mobility, brought on by expansion. Both symmetric expansion and symmetric

no-expansion equilibria may arise, as well as asymmetric expansion equilibria, even for

initially symmetric platforms.
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1 Introduction

Online platforms, such as Google and Facebook are constantly expanding their activities.

Google, since its founding, has added and continues to add many products and services to its

core search engine, including email, an online offi ce suite, a social networking service, cloud

computing, and many more. Facebook, whose core activity is social networking, continues to

augment its core service with related services, including email, instant messaging, and very

recently - Facebook graph search. Evidently, in their expansion efforts, the two companies are

venturing into each other’s territories, increasing the overlap in their activities.

Both Facebook and Google’s revenue comes predominantly from advertising, and this is

also the case for many other online platforms. Advertising revenues are usually collected on a

per-click basis, whereby advertisers pay the platform a price per each user click on their ads.

Users often enjoy the services provided by the platforms for free, and are thus fully subsidized

by the advertisers’side of the market.

This work studies the expansion behavior of such online platforms, within a game theoretic

framework. We model a market with two platforms, through which advertisers may reach po-

tential buyers, also referred to as platform users. Initially, the platforms provide two different

types of services. The platforms provide their services free to users, generating revenues by

selling user clicks to advertisers.1 At the outset, each platform has an exogenously given set

of users, some of which multihome by subscribing to both platforms. This initial partition of

users may take different forms, with varying degrees of asymmetry. The initial user partition

represents platforms’installed base, which is the result of past events outside the scope of the

model (e.g. past interaction between the platforms, or different dates at which the platforms

began operating in the market).

Platforms play an entry or expansion game, where each platform strategically chooses

whether or not to add the service already offered by the rival platform. Such expansion is

assumed to be costless in the model. The game proceeds in two stages. In the first stage,

platforms make their expansion decisions, which determine the set of services offered in the

market. The number of services offered also affects the level of user mobility, i.e., the fraction

of users who may switch between service providers. Users observe platforms’service offering

following expansion decisions, and the non-captive users choose which platform(s) to join, thus

creating the final user partition in the market. In the second stage, platforms play a pricing

game, in which they set prices per user click charged to advertisers in the market. Advertisers

then observe platform prices and users’final partition, and choose where to place their ads,

1The advertisers’side of the market fully subsidizes the buyers’side. This price structure is a standard

result for media and advertising markets, and follows from a high price sensitivity on the buyers’side, together

with a strong positive network externality exerted by potential buyers on advertisers. We abstract away from

assumptions regarding buyers’price sensitivity, and assume the above price structure, as justified by previous

work (see Rochet and Tirole 2006, and Armstrong 2006 for the theoretical basis, and Kaiser and Wright 2006

for empirical validation).
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which, in turn, determines platforms’profits.

We now specify our main assumptions regarding users, advertisers and platforms in the

market. As noted, users are characterized by imperfect mobility, such that some, but not all,

consider switching platforms when observing the service offering following expansion decisions.

The remaining users are captive, and continue subscribing to their original platform, regardless

of its expansion decision. We assume that non-captive users prefer subscribing to both service

types over subscription to just one service. As a base case, we consider migrating users who

become multihomers (i.e., subscribers of the two original services). This could result from

a higher quality for platforms’core services.2 The alternative case where non-captive users

prefer an expanded platform to multihoming (due to low compatibility or platform related

network effects) is discussed in section 5.

The level of mobility in the market is defined as the fraction of non-captive users, and is

determined endogenously by platform expansion decisions. Specifically, mobility may either

increase or decrease with the number of services available. We first analyze the expansion game

for the case where user mobility increases with the introduction of new services. Mobility may

increase in the number of services, if we consider users who are encouraged to try out different

providers when facing more options in the market. The analysis is then conducted for the

case where mobility decreases with platform expansion. This is possible if we consider a non-

expanding platform as specializing in its core service. When this is the case, fewer services

imply higher specialization, and therefore an increased tendency to multihome, i.e. mobility

that decreases in the number of services offered.

Platforms sell user clicks to advertisers, where these clicks are either generated by the

platforms’exclusive users or by multihomers who subscribe to each platform’s original service.

The expected number of clicks sold for each type of users (exclusive or multihomer) is the

product of the number of platform subscribers and their click-through rate (henceforth, CTR).

The CTR is the probability that a platform user clicks on an ad viewed on the platform.

Expansion increases the CTR only for exclusive users, as exclusive users are exposed to ads

on two services rather than one, following expansion. Expansion does not increase the CTR

for multihomers, which remains at the baseline level - the one-service CTR. It is important to

note that the two-service CTR (i.e. CTR for exclusive users following expansion) is higher,

but less than double, the one-service CTR. Further note that each platform sets a single price

per click, which is the same for exclusive and multihoming users.

Advertisers place ads on platforms, and pay platforms for each user click on their ads. Ad-

vertisers’willingness to pay, or value, per click is constant and normalized to one. Advertisers

choose where to advertise, and may advertise on one of the platforms, on both, or not adver-

tise at all. Advertisers’choice maximizes their total expected value from advertising. Total

2Alternatively, movers’choice of multihoming could be the result of a positive same-side network effect for

services based on the initial partition, such that services with more subscribers at the outset are preferred.

This network effect (trivially) implies that migrating users subscribe to the two original services, since newly

added services had no subscribers in the initial partition.
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expected value for advertisers is defined as the difference between the value of expected clicks

on ads (i.e., per click value times expected number of clicks), and their cost, which equals price

per click times the expected number of clicks. Recall that the price per click is the same for

all clicks generated by the platform, whereas the CTR guaranteed by an expanded platform

is not the same for exclusive and multihoming users.

Given a pair of expansion decisions, the resulting user partition, and advertisers’choice

rule, platforms engage in a pricing game. The main feature of the resulting prices is that

prices per click decrease with the size of the multihoming group. This is the case because, in

the pricing game equilibrium, prices are set such that advertisers place ads on both platforms,

but do not pay double for multihomers’ clicks. Specifically, both platforms sell clicks by

multihomers, and expected payment to each platform for these clicks is derived according to

the one-service CTR. However, with advertising on both platforms, multihomers’expected

number of clicks is derived according to the two-service CTR. Since the two-service CTR

is less than double the one-service CTR, reaching multihomers using ads on both platforms

creates some redundancy. Platforms’equilibrium per click prices are therefore constrained by

the degree of user multihoming. The multihoming group thus determines platforms’market

power in the model, such that a low degree of multihoming implies a high degree of market

power, with high per-click prices, and a large degree of multihoming lowers platforms’market

power and the prices per clicked charged.

Market equilibrium is users’final partition, advertisers’choice of where to advertise, and

platforms’expansion and pricing strategies, such that: (1) Users’final partition is a function

of the level of mobility, determined by platforms’expansion decisions, and users’choice rule;

(2) Advertisers’platform choice is optimal, given platforms’expansion decisions, the resulting

user partition, and platform pricing; (3) Platform pricing is Nash equilibrium, given their

expansion decisions, and advertisers’choice rule; and (4) Platforms’expansion decisions are

Nash equilibrium in the expansion game, where profits in each subgame are determined by

(1)-(3).

The game is solved by backward induction. For each of four expansion subgames, the

resulting user partition is derived and the platform pricing game is solved. Platform profits

in each subgame then follow. This yields the payoff matrix for the platform expansion game,

which is then solved to determine the expansion equilibrium. We consider both a simulta-

neous and a sequential move game. The simultaneous move game represents the case where

platforms’development strategies are kept secret until the new service is launched, whereas

the sequential version represents a market where platforms’development strategies are known.

For the sequential move expansion game, we consider both the case where the larger platform

is the first mover, and the case where the smaller platform is first to decide on its expansion

strategy.

Platform expansion has two main effects in the model. The first is the CTR effect. Expan-

sion increases the CTR for platforms’exclusive users, from the one-service to the two-service
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CTR. The CTR effect is thus positive, driving towards expansion. The second effect created

by expansion decisions is the mobility effect, as the level of mobility changes with the number

of services available. The mobility effect implies that expansion decisions affect the final user

partition, which in turn affects the pricing game and platforms’profits for each pair of ex-

pansion decisions. The mobility effect is both direct and indirect. The direct mobility effect

is the quantity effect, i.e. the change in the number of exclusive and multihoming clicks sold

by each platform, resulting directly from the change in the final user partition. Note that

this effect differs in magnitude, and possibly in direction, for the large and small platforms.

This is because the smaller platform enjoys a relatively larger benefit from its rival’s loss of

subscribers. The indirect mobility effect is the price effect created by changes in the degree of

multihoming, where increased multihoming lowers platform prices. This price effect of mobil-

ity may thus counter the CTR effect, and positive quantity effects, leading to equilibria where

one or both platforms choose no expansion.

Equilibrium expansion decisions are derived separately for the case where expansion in-

creases mobility, and for the case where mobility is decreased by expansion. When expansion

increases mobility, the price effect of expansion is negative, while the quantity effect depends

on platforms relative size, and on the opponent’s expansion decision. Expansion decisions,

in this case, will depend on the CTR. For low CTRs, the CTR effect dominates and the

equilibrium is symmetric expansion. As the CTR increases, and the CTR effect decreases

in magnitude, the negative price effect along with asymmetric quantity effects will lead to

asymmetric expansion equilibria for mid-level CTRs, and to symmetric no-expansion for high

CTRs.

Alternatively, when expansion decreases buyer mobility, then it increases both the CTR

and exclusivity in the market, i.e. the CTR and price effects operate in the same direction.

Expansion decisions, in this case, will depend on the magnitude of change in mobility, and on

its initial level. When the change in mobility is small the CTR and price effects dominate, and

the equilibrium is symmetric expansion. When the change in mobility is large, expansion’s

effect of reduced migration by the opponent’s subscribers becomes pronounced. This may

result in an equilibrium with asymmetric expansion, or an equilibrium with symmetric no-

expansion.

The paper is related to the burgeoning literature on two-sided markets. A large part

of this literature has focused on questions regarding platforms’optimal price structure, price

competition, and identifying which platform will "win the market" following price competition.

Such work has been carried out in the context of different market environments, with varying

assumptions regarding preferences of end users, their beliefs, and the information structure

(examples include Caillaud and Jullien 2001 and 2003, Roche and Tirole 2003 and 2006,

Armstrong 2006, Hagiu 2009, and Yehezkel and Halaburda 2011).

Fewer papers have examined platform strategies other than pricing. Strategies studied

include tying (Amelio and Jullien 2012, Choi 2011), and compatibility (Casadesus-Masanell
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and Ruiz-Aliseda 2009). In the context of newspaper markets, several papers have studied

newspapers’ strategic choice of differentiation (Gabszewicz, Laussel and Sonnac 2001 and

2002, Behringer and Filistrucchi 2009).

This work focuses on online platforms’entry decisions, analyzing their strategic choice of

services and the degree of overlap in the services offered. This research thus contributes to the

literature by shedding light on an important facet of the strategic behavior of online platforms

- the ongoing strategic expansion which is shaping online markets.

2 The model

We model a market with two platforms, offering online services to buyers or platform users, in

order to attract advertisers. At the outset, each platform offers one type of service, different

from that offered by its rival. The initial partition of buyers is exogenously given, i.e. each

platform has a given group of users, some of which multihome by subscribing to both platforms.

Platform revenues are generated from the advertisers’side of the market, as platforms charge

advertisers a price per each user click on ads displayed by the platform.

The focus of the model is platforms’strategic expansion behavior. We analyze an entry

or expansion game between the two platforms, where each platform may or may not expand

by adding the service initially offered by the rival platform. Following platform expansion

decisions, some, but not all, users choose which platform(s) to join, and the number of ser-

vices available affects the level of user mobility. Platform expansion decisions thus determine

the final buyer partition in the market. Platforms then set prices per user click charged to

advertisers. Advertisers observe the partition of buyers, and platforms’prices, and choose on

which platform(s) to place their ads.

2.1 Platforms - basic assumptions and notation

There are two platforms in the market and let i ∈ {1, 2} denote the platform index. Platforms
provide free services to their users, generating revenues by charging the advertiser side of the

market a price pi ∈ [0,∞) for each user click on an ad displayed by the platform. At the

outset, each platform is the provider of one type of service, different from the type offered by

the rival platform.

A strategy for platform i is a couple (ei, pi) where ei ∈
{
E, Ē

}
represents the platform’s

expansion decision that can be either "expansion" denoted E or "no expansion" denoted Ē;

and pi ∈ [0,∞) is the price per user click charged to advertisers on the platform. We assume

that each platform may expand only by adding the service already offered by its rival.

Platform profits are derived from user clicks sold to advertisers. We thus turn to introduce

assumptions regarding buyers and advertisers in the market.
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2.2 Buyers

There is a unit mass of buyers in the market. The partition of buyers at the outset is denoted

B = {b1, b2, b12}, where bi is the group of platform i’s exclusive subscribers and its mass,

and b12 is the initial group of multihomers, and its mass (with some abuse of notation).

Multihomers are buyers that subscribe to both platforms, using each platform’s original or

core service.

The initial partition of buyers is exogenously given, and is not the result of optimization,

representing each platform’s installed base. This implies that there may be asymmetry in

platform size at the outset, where platform size is defined as the number of exclusive platform

subscribers. WLOG let b1 ≥ b2, and let δ ≡ b1 − b2 ≥ 0 denote the difference in platforms’

initial size. We will focus our analysis on the effects of the degree of multihoming, and on the

effects of the initial asymmetry in the market. We thus write group sizes as a function of b12

and δ:

b1 = 0.5 (1− b12 + δ) (1)

b2 = 0.5 (1− b12 − δ) (2)

Users’click-through rate. Click-through rate (henceforth, CTR) is the probability that
a user clicks on an ad, and thus increases in the number of exposures to the ad. Ad exposure

occurs via platforms’services. This implies that exclusive users are exposed to ads once when

a platform has not expanded, and twice when it has (given that advertisers place ads on

said platform). Multihomers are exposed to ads once if advertisers place ads on one of the

platforms, and twice if advertisers opt to advertise on both platforms.

Let ρ ∈ (0, 1) denote the one-service CTR, i.e. the probability a user clicks on an ad he

sees on one service, and let ρ̃ denote the two-service CTR, i.e. the probability he clicks on

an ad following exposure on two services. The two-service CTR is given by ρ̃ = 2ρ − ρ2,

which is the probability that a user clicks at least once in two exposures. This definition of ρ̃

represents an underlying assumption that users do not click twice on the same ad; specifically,

advertising on two services reduces the probability of a "no click" event, but the two-service

CTR is not double the one-service CTR - ρ < ρ̃ < 2ρ.

Imperfect mobility. We assume that the initial partition is "sticky", such that, for
each pair of expansion decisions (e1, e2), only fraction βe1e2 ∈ (0, 1) of buyers may switch

platforms or become multihomers, and the remaining (1− βe1e2) buyers are captive users of
the platform(s) they initially subscribed to. We refer to βe1e2 as the level of mobility in the

market, and to the corresponding group of non-captive, migrating, users as movers. Note that

we continue to assume that multihomers subscribe to the two original services, regardless of

(e1, e2).

Movers’choice rule. The non-captive users are assumed to be homogeneous, and employ
the same choice rule. We assume that movers prefer subscription to both service types over

just one. This implies that movers choose either multihoming or an expanded platform (if
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one or both platforms expand). As a base case, we consider migrating users who choose to

multihome. This could result from a higher quality for the core services, coupled with a high

level of compatibility between the two platforms. In section 5, we discuss the alternative

case where non-captive users prefer an expanded platform over multihoming, due to low

compatibility or a strong platform-related network effect.

The level of mobility. The level of mobility in the market depends on platforms’expan-
sion decisions, and specifically assume that mobility changes monotonically with the number

of services offered. Denote by βn ∈ (0, 1) the level of mobility for a market with n new services,

where n ∈ {0, I, II}. This implies that βĒĒ = β0, βĒE = βEĒ = βI , and βEE = βII . We

consider the following two separate cases:

1. Mobility increases in the number of services offered: β0 < βI < βII . This represents

markets where users are more likely to sample and change service providers, when their

choice set increases.

2. Mobility decreases in the number of services offered: β0 > βI > βII . This assumption

is well suited for our base case where non-captive users prefer to multihome, and no-

expansion implies specialization in platforms’core activity. When this is the case, the

tendency to multihome is higher when fewer new services are introduced, i.e. - mobility

decreases in n.3

For both cases, we assume, for simplicity, that the change in mobility resulting from the

introduction of one service is constant, such that:

∆β ≡ βII − βI = βI − β0 (3)

We further assume that changes in mobility are bounded, and specifically that ∆β ∈(
−0.5β0, 0.5

(
1− β0

))
, to ensure that β2 ∈ (0, 1).

Buyers’ final partition. The final partition of buyers is denoted B̄ = {b̄1, b̄2, b̄12},
where b̄i denotes both the group of platform i’s subscribers and its mass, following platforms’

expansion decisions and movers’choice rule; b̄i is given by:

b̄i = (1− βe1e2) bi + ∆bi (4)

Where ∆bi depends on movers’choice rule. b̄12 is similarly defined.

In the base case, with multihoming movers ∆bi = 0, and the mass of multihomers in the

final partition is given by b̄12 = (1− βe1e2) b12 + βe1e2 .

Summarizing, buyers’final partition B̄ depends on platforms’entry decisions, and is de-

rived from the initial partition, together with movers’choice rule. Buyers’final partition then

affects advertisers’choice of platforms.

3Alternatively, one may think of users that become confused by the introduction of new services, such that

they are less likely to sample and change providers when their choice set increases.

8



2.3 Advertisers

There is a unit mass of homogeneous advertisers in the market. Advertisers’ strategy is a

choice of platform or platforms on which to place ads, denoted α ∈ A ≡ {{1} , {2} , {1, 2} , ∅}.
Advertisers’value for each user click on their ads is constant, and normalized to 1. The

expected value of advertising on α, depends on buyers’final partition, the CTR for buyers

reached through α, and the price per click charged. The expected value for an advertiser from

choice α, given (ei, pi)i=1,2, and B̄, is denoted V
α ≡ V

(
α | (ei, pi)i=1,2 , B̄

)
:

V α =


(1− pi)

[
ρib̄i + ρb̄12

]
for α = {i}[

ρ1b̄1 + ρ2b̄2 + ρ̃b̄12

]
− p1

[
ρ1b̄1 + ρb̄12

]
− p2

[
ρ2b̄2 + ρb̄12

]
for α = {1, 2}

0 for α = ∅
(5)

Where ρi is the CTR for exclusive subscribers of platform i, and thus depends on its expansion

decision:

ρi =

{
ρ ei = Ē

ρ̃ ei = E
(6)

Whenever advertising on platform i, advertisers pay the platform for the user clicks it

provides. The expected number of clicks generated by advertising on platform i is
[
ρib̄i + ρb̄12

]
,

where ρib̄i are expected clicks from i’s exclusive subscribers, and ρb̄12 are expected clicks of

multihomers, who subscribe to one service offered by i. Therefore, advertising on platform i

is always at an expected cost of pi
[
ρib̄i + ρb̄12

]
.

The expected value of advertising on a single platform is the product of advertiser’s

per click value, and the expected number of clicks, minus the expected cost of advertising,

(1− pi)
[
ρib̄i + ρb̄12

]
. When advertising on both platforms, an advertiser reaches multihoming

buyers through two services, and therefore the expected number of clicks generated by this

group is ρ̃b̄12, while each platform charges pi ·ρb̄12 for multihomers’clicks. The expected value

from the choice α = {1, 2} is therefore smaller than the sum of values generated by advertising
on each platform separately.

Given platforms’entry and pricing decisions, and the resulting buyer partition, an adver-

tiser chooses where to advertise, α∗, so as to maximize his expected value from advertising:

α∗ = arg max
α∈A

{
V
(
α | (ei, pi)i=1,2 , B̄

)}
(7)

2.4 Platforms - profits and optimization

Each pair of platform expansion decisions (e1, e2) defines an expansion subgame, and deter-

mines B̄ in the subgame. Platform i’s expected profit in an expansion subgame (e1, e2), for
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price pi, given B̄ and the rival’s price pj, are denoted πi
(
pi|pj, e1, e2, B̄

)
, and given by:

πi
(
pi|pj, e1, e2, B̄

)
=

{
pi ·
[
ρib̄i + ρb̄12

]
if i ∈ α∗

0 if i /∈ α∗
(8)

Where, the expected number of clicks,
[
ρib̄i + ρb̄12

]
, is comprised of ρib̄i clicks by exclusive

subscribers, and ρb̄12 clicks by multihomers, who use only the platform’s core service, regardless

of ei.

Platform prices in each expansion subgame are Nash equilibrium, such that:

p∗i = arg maxπi
(
pi|p∗j , e1, e2, B̄

)
(9)

Platform i’s equilibrium expected profits in an expansion subgame (e1, e2) are therefore

πe1e2i ≡ πi
(
p∗i |p∗j , e1, e2, B̄

)
.

The payoffmatrix for the platform expansion game is then constructed using (πe1e21 , πe1e22 )

for each subgame. We analyze the simultaneous move expansion game, deriving Nash Equi-

librium expansion decisions (e∗1, e
∗
2), such that:

e∗i = arg maxπe1e2i

(
ei, e

∗
j

)
(10)

This simultaneous move game represents an environment where platforms’development efforts

are kept secret until new services are launched.

Whenever there are multiple equilibria in the simultaneous move expansion game, we

further analyze the sequential move game to examine which equilibrium would arise when

platforms’development efforts are known. The equilibrium concept is then SGPE, and we

consider both the case where the larger platform is the first mover, as well as the case where

it is the follower.

2.5 Timeline

The timeline of the model is as follows:

1. Platforms make expansion decisions e1 and e2.

2. Final buyer partition B̄ is determined, given buyers’choice rule and the level of mobility,

βe1e2 .

3. Platforms set prices per user click p1 and p2, given e1, e2, and B̄, as well as advertisers

choice rule.

4. Advertisers choose the platform(s) on which they place their ads, α∗, given (ei, pi)i=1,2

and B̄.

5. Platform profits are determined.

10



This is summarized in the following figure 1.

Figure 1: Timeline of the model

2.6 Market equilibrium

We define market equilibrium for the simultaneous move expansion game.

Definition 1 Market equilibrium is a triplet
〈
B̄, α∗, (e∗i , p

∗
i )i=1,2

〉
such that, given the

initial buyer partition B:

1. Buyers’final partition B̄ is determined by platforms’expansion decisions affecting βe1e2 ,

and movers’choice rule.

2. Advertisers’platform choice is optimal, given platforms’expansion and pricing decisions,

and the resulting buyer partition: α∗ = arg maxα∈A

{
V
(
α| (ei, pi)i=1,2 , B̄

)}
.

3. Platform pricing is Nash equilibrium, given platforms’expansion decisions, the resulting

buyer partition, and advertisers’choice rule: p∗i = arg maxπi
(
pi|p∗j , e1, e2, B̄

)
.

4. Platforms’expansion decisions are Nash equilibrium in the expansion game, where profits

in each expansion subgame are determined by 1-3: e∗i = arg maxπe1e2i

(
ei, e

∗
j

)
.

As noted, we will consider the sequential move expansion game as a means of equilibrium

selection, whenever multiple equilibria arise in the simultaneous move game. The definition

of market equilibrium will be similar, differing only in the equilibrium concept for optimal

expansion decisions (item 4), which will be SGPE.

3 Analysis and main effects

Platform expansion increases the CTR for exclusive users, while changing the partition of

users through its effect on user mobility. The change in buyer partition then affects platforms’

pricing and profits. We hereby derive buyers’final partition, platforms’optimal prices per

click, and optimal choice rules for expansion, while discussing these effects, which we label

the CTR effect, the quantity effect of mobility, and the price effect of mobility.
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3.1 The CTR effect of expansion

The CTR effect refers to the increase in CTR for exclusive platform users brought on by

expansion. Specifically, expansion increases CTR for these users from the one-service CTR,

ρ, to the two-service CTR, (2ρ− ρ2). The CTR effect is thus a positive quantity effect, which

drives platforms towards expansion. It immediately follows that, absent mobility effects, when

∆β = 0, both platforms will always expand and the equilibrium is (E,E).

It is important to note that the CTR effect decreases in magnitude as ρ increases.

3.2 Buyer partition and the quantity effect of mobility

Given a pair of expansion decisions (e1, e2), the final partition of buyers, B̄, is such that:

b̄i = (1− βe1e2) bi (11)

b̄12 = (1− βe1e2) b12 + βe1e2 (12)

The quantity effect of mobility is the change in the partition of users, directly resulting

from the change in mobility. When mobility increases, both platforms are left with smaller

masses of exclusive users, but at the same time sell more clicks by multihomers. We summarize

the quantity effect of increased mobility for platform i by focusing on the increase in the mass

of multihomers, comprised of: (1) βe1e2bi users lost by platform i - this increase in b12 comes

at own "expense"; (2) βe1e2bj users lost by the opponent platform j - this increase comes at

j’s "expense".

Given that platform i expands, own user loss creates a negative quantity effect, since the

migrating users would generate a higher CTR as exclusive users than they do as multihomers.

However, given that i has not expanded, migrating users are characterized by the same CTR

whether they are exclusive users or multihomers. In this case there is no quantity effect for

lost users. On the other hand, increased multihoming due to buyers lost by the rival platform

always creates a positive quantity effect.

Further note that the quantity effect depends on platforms’relative size. Specifically, when

platforms are asymmetric, the smaller platform benefits more from its rival loss than the larger

platform.

This quantity effect is the direct effect of increased mobility. There further exists an

indirect effect - the price effect of multihoming, discussed in the following subsection.

3.3 Optimal pricing and the price effect of mobility

We turn to platforms’optimal pricing in a given expansion subgame. Given (e1, e2) and the

resulting B̄, advertisers place ads on both platforms whenever V 12 ≥ V 1, V 2, 0, and choose

a single platform i whenever V i > V 12, V j, 0. Solving V 12 ≥ V j we find that α∗ = {1, 2}

12



whenever pi ≤ p̂e1e2i for i = 1, 2, where:

p̂e1e2i ≡ 1− ρ2b̄12

ρib̄i + ρb̄12

(13)

Furthermore, note that V i ≥ V j if and only if pi ≤ p̃i (pj), where p̃
e1e2
i (pj) ≡

[ρib̄i−ρj b̄j]+pj[ρj b̄j+ρb̄12]
ρib̄i+ρb̄12

.

It is easily verified that p̂e1e2i = p̃e1e2i (p̂j), thus V 1 = V 2 = V 12 = ρ2b̄12 for pi = p̂e1e2i ,

i = 1, 2.

Proposition 1 provides a characterization of the pricing equilibrium, and the resulting

platform profits, for each pair of expansion decisions.

Proposition 1: Given B̄ platforms will set prices at p∗i = p̂e1e2i for i = 1, 2, and thus

platform profits in every subgame (e1, e2) are given by

πe1e2i = ρib̄i + ρ (1− ρ) b̄12 (14)

Proof: First note that i ∈ α∗ for all pi ≤ p̂e1e2i , and the profit maximizing price in this region

is clearly pi = p̂e1e2i . We now consider pi > p̂e1e2i . Pricing at pi ≥ 1 leads to i /∈ α∗ and

zero profits, and is not profit maximizing. Therefore assume pi ∈ (p̂e1e2i , 1): if pj ∈
(
p̂e1e2j , 1

)
then only one platform is chosen by advertisers - assume that i is chosen, i.e. V i ≥ V j. This

implies zero profits for j, and a profitable deviation to p̂e1e2j . Alternatively, if pi ∈ (p̂e1e2i , 1)

and pj = p̂e1e2j then V j > V i and thus i /∈ α∗, and i has a profitable deviation to pi = p̂e1e2i . We

have thus shown that for any price pi 6= p̂e1e2i there exists a profitable deviation to pi = p̂e1e2i .

Nash equilibrium prices in a given subgame are thus p∗i = p̂e1e2i for i = 1, 2. Substituting for

p̂e1e2i in 8 yields the expression in 14 for platforms’profits in subgame (e1, e2).�

We write the first order derivatives of p̂e1e2i with respect to b̄12 and b̄i:

∂p̂e1e2i

∂b̄12

= − ρ2ρib̄i(
ρib̄i + ρb̄12

)2 < 0 (15)

∂p̂e1e2i

∂b̄i
=

ρiρ
2b̄12[

ρib̄i + ρb̄12

]2 > 0 (16)

Equilibrium prices per click decrease in the degree of multihoming, b̄12, and increase in

the mass of exclusive users, b̄i. This is labeled the price effect of mobility, as increased mo-

bility leads to increased multihoming and lower exclusivity, which result in lower prices. A

higher degree of multihoming leads to lower prices, since advertisers place ads on both plat-

forms in equilibrium, and thus reach multihomers through both platforms. This implies that

equilibrium per click prices are constrained by the degree of multihomimg. Therefore, quite

intuitively, market power in the model stems from platforms’exclusive users, and decreases in

the degree of multihoming. The price effect of mobility is thus negative, whenever the change

in mobility increases multihoming (and, at the same time, decreases exclusivity).
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3.4 Optimal expansion rules

We proceed to derive conditions for platforms’ expansion decisions. Expansion rules will

clearly take into account the CTR effect, and both the price and quantity effects of mobility,

and will depend on the relative magnitudes of these effects.

Given platform j’s expansion decision, ej, i will expand whenever π
Eej
i ≥ π

Ēej
i . (We assume

that indifference is resolved by favoring expansion.) Solving yields, for ρ < ρ̄ej :

ei|ej =

{
E for b12 ≤ b̃iej
Ē for b12 > b̃iej

(17)

Whereas, for ρ > ρ̄ej :

ei|ej =

{
Ē for b12 < b̃iej
E for b12 ≥ b̃iej

(18)

Where ρ̄ej is given by:

ρ̄ej =
1− βEej + ∆β

1− βEej + 2∆β
(19)

And the threshold b̃iej depends on i, j, since b1 ≥ b2, such that:

b̃1
e2

= 1 + δ
(1− ρ)

(
1− βEe2

)
−∆β

(1− ρ)
(
1− βEe2

)
−∆β + 2 (1− ρ) ∆β

(20)

b̃2
e1

= 1− δ
(1− ρ)

(
1− βEe1

)
−∆β

(1− ρ)
(
1− βEe1

)
−∆β + 2 (1− ρ) ∆β

(21)

The intuition behind the above thresholds is as follows. When the CTR is relatively small,

ρ < ρ̄ej , the total quantity effect of CTR and mobility is positive, and therefore expansion

is optimal whenever the price effect is not too large. This implies that the platforms will

expand for relatively low levels of multihoming, b12 ≤ b̃iej , and will not expand when the mass

of multihomers is large, and the price effect of mobility overcomes the total quantity effect.

Alternatively, when the CTR is relatively large, ρ > ρ̄ej , then both the price effect of

mobility and the total quantity effect (of CTR and mobility) are negative. When this is

the case, no-expansion is optimal for low levels of multihoming. However, it is possible that

for high levels of b12, the total negative effect will be weaker under expansion compared to

no-expansion, and thus expansion will be optimal.

Using 17 and 18, and the thresholds defined in 19-21, equilibrium expansion decisions are

derived.

4 Platform expansion equilibrium

4.1 Mobility increases with expansion

When expansion increases mobility, the price effect is clearly negative, due to the increase in

multihoming. This is, of course, in addition to the always-positive CTR effect. The quantity
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effect is ambiguous, and will depend on platforms’relative size and expansion decisions.

We first examine equilibrium expansion decisions for initially symmetric platforms. The

equilibrium is symmetric expansion for low levels of ρ due to dominance of the CTR effect,

and symmetric no-expansion for high levels of ρ due to dominance of the price effect (both

in dominant strategies). For mid-level CTRs, asymmetric equilibria arise, even though the

platforms are symmetric at the outset. This is driven by the negative quantity effect arising

from the rival platform’s expansion. Specifically, when ρ is mid-ranged and the rival platform

has not expanded, the negative effect of increasing mobility of own users is relatively small,

and offset by the increase in rival users’mobility and the CTR effect. This implies that

expansion is optimal, given the opponent has not expanded. However, when the opponent has

expanded, a negative effect of own users’mobility is already in place, and the negative price

effect of multihoming is stronger due to the rival’s expansion. When this is the case, own

expansion entails a quantity effect that cannot offset the now stronger price effect. Therefore,

no-expansion is optimal, given the rival platform has expanded.

We now consider which of the asymmetric equilibria would arise for mid-level CTRs, when

expansion decisions are made sequentially. Clearly, while both platforms are characterized

by the same level of mobility, the expanding platform enjoys the favorable CTR effect, not

enjoyed by its rival. It follows that in the sequential move game, the first mover will expand,

and the follower will not.

The results are summarized in the following proposition 2, as well as in figure 2.

Proposition 2: In the case of mobility that increases with expansion: asymmetric expan-
sion may be an equilibrium, even when platforms are symmetric at the outset. Formally: when

∆β > 0 and δ = 0, there exist ρ̄E, ρ̄Ē, such that 0 < ρ̄E < ρ̄Ē < 1:

1. For ρ ∈ (0, ρ̄E): The equilibrium is (E,E), i.e. symmetric expansion for low-level

CTRs.

2. For ρ ∈ (ρ̄E, ρ̄Ē): The equilibria are
(
E, Ē

)
and

(
Ē, E

)
, i.e. asymmetric expansion

for mid-level CTRs. When expansion decisions are made sequentially, the first mover

will expand, and the follower will not: if platform 1 is the first mover the equilibrium is(
E, Ē

)
, and otherwise

(
Ē, E

)
.

3. For ρ ∈ (ρ̄Ē, 1): The equilibrium is
(
Ē, Ē

)
, i.e. symmetric no-expansion for high-level

CTRs.

Proof: see appendix.

Figure 2: Equilibrium expansion decisions, as a function of ρ, for ∆β > 0 and δ = 0.
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We turn to the case of asymmetric platforms, where the quantity effects of mobility are

asymmetric. In this case, the smaller platform gains more from its rival’s loss of users, and

thus has a stronger incentive to increase mobility by expansion.

As in the case of symmetric platforms, the incentive to expand decreases as the CTR

increases. When the CTR is small, expansion is, as before, a dominant strategy for both

platforms. As the CTR increases, we identify a region where expansion is still a dominant

strategy for the smaller platform, but the larger platform will not expand when the mass of

multihomers is large. This is due to the larger platform’s weaker quantity effect. Further

increases in ρ, give rise to a region where, for high degrees of multihoming, only the smaller

platform expands, while for low degrees of multihoming both types of asymmetric expansion

equilibria may arise, and the intuition is the same as for the case of symmetric platforms.

When the CTR is very large, the quantity effect of expansion is negative for both platforms.

In this region, the larger platform will not expand, while the smaller platform expands only

for large degrees of multihoming.

This equilibrium characterization is presented in proposition 3 and in the figure that fol-

lows.

Proposition 3: In the case of mobility that increases with expansion: asymmetric and
symmetric equilibria may both arise, when platforms are asymmetric at the outset. Formally:

when ∆β > 0 and δ > 0, there exist ρ̃1
E, ρ̄E, ρ̄Ē, such that 0 < ρ̃1

E < ρ̄E < ρ̄Ē < 1:

1. For ρ ∈
(
0, ρ̃1

E

)
: The equilibrium is (E,E), i.e. symmetric expansion for low-level

CTRs.

2. For ρ ∈
(
ρ̃1
E, ρ̄E

)
there exists b̃1

E ∈ (0, 1− δ): The equilibrium is (E,E) for b12 ≤ b̃1
E

and
(
Ē, E

)
otherwise.

3. For ρ ∈ (ρ̄E, ρ̄Ē) there exist b̃1
Ē
, b̃2
E ∈ (0, 1− δ): The equilibrium is

(
Ē, E

)
for b12 >

min
{
b̃1
Ē
, b̃2
E

}
, and otherwise

(
E, Ē

)
and

(
Ē, E

)
are both equilibria. For b12 ≤ min

{
b̃1
Ē
, b̃2
E

}
and the case of sequential expansion decisions, the first mover will expand, and the fol-

lower will not: if platform 1 is the first mover the equilibrium is
(
E, Ē

)
, and otherwise(

Ē, E
)
.

4. For ρ ∈ (ρ̄Ē, 1) there exists b̃2
Ē
∈ (0, 1− δ): The equilibrium is

(
Ē, Ē

)
for b12 ≤ b̃2

Ē
and(

Ē, E
)
otherwise.

Proof: see appendix.

Figure 3a: Equilibrium expansion decisions as a function of ρ, for ∆β > 0 and δ > 0.
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To further demonstrate the optimality of no-expansion when the degree of multihoming

is large, we turn our attention to figure 3b. The figure graphs profits for platform 1 under

expansion and no-expansion, as a function of the initial degree of multihoming, for relatively

low CTRs, ρ ∈
(
ρ̃1
E, ρ̄E

)
. Given that a platform has expanded, profits for this platform are

always decreasing in b12, because under expansion, exclusive users have a higher CTR, and

thus each user lost to multihoming lowers profits.4

Alternatively, given that a platform has not expanded and ρ < 0.5, platform profits are

increasing in b12. This is because, under no-expansion, exclusive and multihoming users have

the same CTR, and for ρ < 0.5 the quantity effect of increased multihoming is stronger than

the price effect. This implies that for ρ ∈
(
ρ̃1
E, ρ̄E

)
, there exists b̃1

E, such that π
ĒE
1 > πEE1 for

b12 > b̃1
E, and so the larger platform will optimally not expand in this domain.

Figure 3b: Profits for platform 1 under expansion and no-expansion, as a function of b12, for

ρ ∈
(
ρ̃1
E, ρ̄E

)
.

4.2 Mobility decreases with expansion

When expansion decreases mobility, the price effect of expansion is positive, as is the quantity

effect arising from decreased loss of exclusive users. The quantity effect resulting from the

rival’s user loss is negative. When the change in mobility is small, expansion is a dominant

strategy for both platforms, due to the positive price effect, the positive quantity effect of

reduced own-user loss, and the (always) positive CTR effect. However, when the change in

mobility is large, the quantity effect resulting from the opponent’s loss of subscribers becomes

stronger, and no-expansion equilibria may arise.

The above intuition drives the following result, stated for symmetric platforms in propo-

sition 4 and in figure 4.

4Mobility effects are irrelevant, as we focus on profits given expansion.
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Proposition 4: In the case of mobility that decreases with expansion: when platforms are
symmetric at the outset the equilibrium is symmetric - either both platforms expand or both

do not. Formally: when −0.5β0 < ∆β < 0, and δ = 0, the equilibrium depends on the initial

mobility β0 and on |∆β|:

1. For β0 ≤ 2
3
: The equilibrium is (E,E).

2. For β0 > 2
3
: (a) When |∆β| ≤ 1 − β0, the equilibrium is (E,E), i.e. small changes in

mobility lead to symmetric expansion; (b) When 1 − β0 < |∆β| ≤ 0.5β0, the equilibria

are (E,E) and
(
Ē, Ē

)
, i.e. both symmetric expansion and no-expansion are possible for

large changes in mobility. When expansion decisions are made sequentially, the SGPE

is
(
Ē, Ē

)
.

Proof: see appendix.

Figure 4: Equilibrium expansion decisions as a function of ∆β, when ∆β < 0, for δ = 0,

β0 > 2
3
(when β0 ≤ 2

3
the left region does not exist)

When the platforms are asymmetric, the above intuition holds, but now there may be cases

with an asymmetric expansion equilibrium due to the asymmetric quantity effect of mobility.

Specifically, the smaller platform benefits from its rival’s mobility, and may therefore not

expand in equilibrium. This will occur when the degree of multihoming is large, and thus the

price effect of expansion is relatively small.

The result is presented in proposition 5 and the following figure 5.

Proposition 5: In the case of mobility that decreases with expansion: when platforms
are asymmetric at the outset the equilibrium is may be either symmetric or asymmetric, and

depends on both the mobility parameters, β0,∆β, and the size of the multihoming group b12.

Formally, when −0.5β0 < ∆β < 0, and δ > 0:

1. For β0 ≤ 2
3
or β0 > 2

3
and |∆β| ≤ 1− β0, there exists b̃2

E ∈ (0, 1− δ): The equilibrium
is (E,E) for b12 ≤ b̃2

E, and
(
E, Ē

)
otherwise.

2. For β0 > 2
3
and 1 − β0 < |∆β| ≤ 0.5β0, there exists b̃1

Ē
, b̃2
E ∈ (0, 1− δ), such that

b̃1
Ē
< b̃2

E: The equilibria are (E,E) and
(
Ē, Ē

)
for b12 ≤ b̃1

Ē
; The equilibrium is (E,E)

for b12 ∈
(
b̃1
Ē
, b̃2
E

)
, and

(
E, Ē

)
otherwise. For b12 ≤ b̃1

Ē
, and sequential expansion

decisions, the SGPE is either (E,E) or
(
Ē, Ē

)
, depending on the levels of b12, ρ, β

0,∆β.
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Proof: see appendix.

Figure 5: Equilibrium expansion decisions as a function of b12, for δ > 0, ∆β < −
(
1− β0

)
,

and β0 > 2
3
(when ∆β > −

(
1− β0

)
or β0 ≤ 2

3
the left region does not exist)

Note that the intuition for platform 2’s expansion decisions for b12 > b̃1
Ē
, is the same as

presented in figure 3b and the preceding discussion.

5 Discussion

We have presented a game theoretic modeling framework for analysis of online platforms’

expansion decisions, focusing on expansion into services already offered in the market. The

analysis demonstrates that platforms may not expand in equilibrium, even though expansion

is assumed to be costless, and increases the CTR for platform users. This is due to the

endogenous user mobility in the model, which creates quantity and price effects to platform

expansion.

We have analyzed the model under the assumption that migrating users become multi-

homers, which could represent a positive network effect for the core services available at the

outset, or a higher quality for these services. An alternative assumption is that migrating

users prefer to singlehome, i.e. subscribing to a single platform, whenever at least one of the

platforms expands.

Under this alternative assumption, movers continue to prefer subscription to two service

over one, but multihome only when no platform expands. When one platform expands, it

attracts all the movers in the market, and when both platforms expand, migrating buyers will

subscribe to the platform which was larger at the outset. This is interpreted as a platform-

related positive network effect.

In this case, when expansion raises the level of mobility, it decreases multihoming and

creates a positive price effect for both platforms. The quantity effect is always positive for the

larger platform, which will always choose to expand. The smaller platform, on the other hand,

may not expand, as expansion increases loss of own users (exclusive users and multihomers),

who migrate to the larger platform. The smaller platform’s expansion decision, will depend

on the CTR, on the initial mobility and the expected change in mobility, as well as on the

degree of multihoming.

As in the base case examined, the equilibrium will depend on the relative sizes of the

CTR effect, price effect, and quantity effect, where the first two are positive, and the third is

negative. The smaller platform will not expand when the CTR is relatively large, when the

19



change in mobility caused by expansion is large, or when the degree of multihoming is small.

Market equilibrium may thus be either symmetric expansion, or asymmetric expansion where

the larger platform expands and the smaller platform does not.

Considering the above alternative assumption regarding buyers’choice rule highlights the

importance of endogenous user mobility in our modeling framework. When the level of mobil-

ity changes with the introduction of new services, expansion by one platform exerts strategic

effects on its rival, directly through the change in user partition, and indirectly through prices.

This feature leads to the various types of market equilibria that arise in the model.

Is it reasonable to assume that users’mobility changes with the number of services in the

market? While extremely diffi cult to measure, it seems that mobility in online markets does

change over time, whether it increases with platform compatibility (and thus decreases when

compatibility decreases), or increases with the number of alternatives available to users in the

market.

Appendix

Proof of proposition 2: For δ = 0 the thresholds b̃iej = 1 for i = 1, 2. Furthermore, ∆β > 0

implies that 0 < ρ̄E < ρ̄Ē < 1. We now specify decision rules and the resulting equilibrium

for each domain of ρ:

1. For ρ ∈ (0, ρ̄E): ei|ej = E whenever b12 ≤ 1. ei = E is a dominant strategy for i = 1, 2,

and the equilibrium is (E,E).

2. For ρ ∈ (ρ̄E, ρ̄Ē): ei|Ē = E whenever b12 ≤ 1, and ei|E = Ē whenever b12 ≤ 1.

Both
(
E, Ē

)
and

(
Ē, E

)
are thus equilibria. Comparing profits for the two asymmetric

equilibria yields πEĒ1 > πĒE1 and πĒE2 > πEĒ2 . This implies that profits are higher for

the expanding platform. Therefore, in a sequential move expansion game the first mover

will expand and the follower will not.

3. For ρ ∈ (ρ̄Ē, 1): ei|ej = Ē whenever b12 ≤ 1. ei = Ē is a dominant strategy for i = 1, 2,

and the equilibrium is
(
Ē, Ē

)
.

�
Proof of proposition 3: For δ > 0, the initial degree of multihoming is b12 < 1− δ. We

first derive conditions for b̃iej < 1− δ for i = 1, 2.

b̃1
e2
< 1− δ whenever:

1 + δ
(1− ρ)

(
1− βEe2

)
−∆β

(1− ρ)
(
1− βEe2

)
−∆β + 2 (1− ρ) ∆β

< 1− δ (22)

This implies that for ρ < ρ̄e2 : b̃
1
e2
< 1 − δ ⇐⇒ ρ > ρ̃1

e2
≡ 1−βEe2

1−βEe2+∆β
, while for ρ > ρ̄e2 :

b̃1
e2
< 1− δ ⇐⇒ ρ < ρ̃1

e2
≡ 1−βEe2

1−βEe2+∆β
.
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b̃2
e1
< 1− δ whenever:

1− δ
(1− ρ)

(
1− βe1E

)
−∆β

(1− ρ)
(
1− βe1E

)
−∆β + 2 (1− ρ) ∆β

< 1− δ (23)

This implies that for ρ < ρ̄e1 : b̃
2
e1
< 1− δ ⇐⇒ ∆β < 0, while for ρ > ρ̄e1 : b̃

2
e1
< 1− δ ⇐⇒

∆β > 0.

Since ∆β > 0: b̃2
e1
> 1− δ for ρ < ρ̄e1 , and b̃

2
e1
< 1− δ for ρ > ρ̄e1 .

Furthermore, ∆β > 0 implies that 0 < ρ̃1
E < ρ̃1

Ē < ρ̄E < ρ̄Ē < 1. We now specify decision

rules and the resulting equilibrium for each domain of ρ:

1. For ρ ∈
(
0, ρ̃1

E

)
: ei|ej = E whenever b12 ≤ b̃iej , and b̃

i
ej
> 1 − δ for i = 1, 2. ei = E is a

dominant strategy for i = 1, 2, and the equilibrium is (E,E).

2. For ρ ∈
(
ρ̃1
E, ρ̃

1
Ē

)
and

(
ρ̃1
Ē, ρ̄E

)
: ei|ej = E whenever b12 ≤ b̃iej . Since b̃

2
ei
> 1− δ, e2 = E

is a dominant strategy. b̃1
E < 1− δ, such that platform 1’s strategy depends on b12. The

equilibrium is (E,E) for b12 ≤ b̃1
E and

(
Ē, E

)
for b12 > b̃1

E.

3. For ρ ∈ (ρ̄E, ρ̄Ē): ei|Ē = E whenever b12 ≤ b̃i
Ē
, while ei|E = E whenever b12 ≥ b̃iE Since

b̃1
Ē
< 1− δ, b̃1

E > 1− δ, b̃2
Ē
> 1− δ, and b̃2

E < 1− δ - e1|E = Ē, and e2|Ē = E, while e1|Ē
and e2|E depend on b12. For b12 > min

{
b̃1
Ē
, b̃2
E

}
the equilibrium is

(
Ē, E

)
, and otherwise(

Ē, E
)
and

(
E, Ē

)
are both equilibria. For b12 ≤ min

{
b̃1
Ē
, b̃2
E

}
, comparing profits for

the two asymmetric equilibria yields πEĒ1 > πĒE1 and πĒE2 > πEĒ2 . This implies that

profits are higher for the expanding platform. Therefore, in a sequential move expansion

game the first mover will expand and the follower will not.

4. For ρ ∈ (ρ̄Ē, 1): ei|ej = E whenever b12 ≥ b̃iej . Since b̃
1
e2
> 1 − δ, e1 = Ē is a dominant

strategy. b̃2
Ē
< 1− δ, such that platform 2’s strategy depends on b12. The equilibrium is(

Ē, Ē
)
for b12 ≤ b̃2

Ē
and

(
Ē, E

)
for b12 > b̃2

Ē
.

�
Proof of proposition 4: For δ = 0 the thresholds b̃iej = 1 for i = 1, 2. For −0.5β0 <

∆β < 0, there are two possible cases, depending on β0 and |∆β|:

1. For β0 ≤ 2
3
: −0.5β0 > −

(
1− β0

)
, thus for all −0.5β0 < ∆β < 0 and ρ̄Ē, ρ̄E > 1. This

implies ρ < ρ̄Ē, ρ̄E ∀ρ⇒ ei|ej = E for b12 ≤ 1. ei = E is a dominant strategy for i = 1, 2,

and the equilibrium is (E,E).

2. For β0 > 2
3
: (a) When |∆β| ≤ 1 − β0: the analysis is the same as in 1; (b) When

1−β0 < |∆β| ≤ 0.5β0, the thresholds for ρ are ρ̄Ē < 0, ρ̄E > 1. This implies ρ̄Ē < ρ < ρ̄E
∀ρ ⇒ ei|E = E for b12 ≤ 1, and ei|Ē = Ē for b12 ≤ 1. The equilibria are (E,E)

and
(
Ē, Ē

)
. Comparing profits for the two symmetric equilibria yields πĒĒi > πEEi .

Therefore, in a sequential move expansion game the SGPE is
(
Ē, Ē

)
.
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�
Proof of proposition 5: For δ > 0 and −0.5β0 < ∆β < 0:

1. For β0 ≤ 2
3
, or β0 > 2

3
and |∆β| ≤ 1 − β0: the thresholds for ρ are ρ̄Ē, ρ̄E > 1. This

implies that ρ < ρ̄Ē, ρ̄E ∀ρ ⇒ ei|ej = E for b12 ≤ b̃iej , where the thresholds for b12 are

b̃1
e2
> 1 − δ, b̃2

Ē
< b̃2

E < 1 − δ. e1 = E is a dominant strategy, and the equilibrium is

(E,E) for b12 ≤ b̃2
E, and

(
E, Ē

)
otherwise.

2. For β0 > 2
3
and 1 − β0 < |∆β| ≤ 0.5β0: the thresholds for ρ are ρ̄Ē < 0, ρ̄E > 1. This

implies that ρ̄Ē < ρ < ρ̄E ∀ρ ⇒ ei|E = E for b12 ≤ b̃iE, and ei|Ē = Ē for b12 ≤ b̃i
Ē
,

where the thresholds for b12 are b̃1
Ē
, b̃2
E < 1 − δ, and b̃1

E, b̃
2
Ē
> 1 − δ. For b12 ≤ b̃1

Ē

both (E,E) and
(
Ē, Ē

)
are equilibria; for b12 ∈

(
b̃1
Ē
, b̃2
E

)
the equilibrium is (E,E), and

for b12 ∈
(
b̃2
E, 1− δ

)
the equilibrium is

(
E, Ē

)
. Lastly, for b12 ≤ b̃1

Ē
, and sequential

expansion decisions: both πĒĒi > πEEi and πĒĒi < πEEi are possible, and the direction of

the equilibrium depends on b12, ρ, β
0,∆β.

�
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